Es necesario haber cursado las asignaturas de Matemáticas, Física y Fundamentos de Química. Es recomendable haber aprobado dichas asignaturas en Fundamentos de Químia y Física se introducen aspectos que se desarrllaran en profundidad en esta asignatura.La asignatura de Matematicas proporcionará algunas de las herramientas de calculo que se emplearan en el tratamiento de la Mecanica Cuantica y la Espectroscopia que se hace en la asignatura de Quimica Fisica II.
El sentido de la asignatura es el estudio de la materia desde el punto de vista atómico- molecular con las herramientas que proporciona la mecánica cuántica y el estudio de los espectros moleculares. La asignatura pertenece al modulo II: Fundamentos de Química. Es un asignatura de carácter obligatorio de 6 créditos. Esta asignatura establece los fundamentos sobre la estructura atómica y molecular y de como obtener propiedades atómicas y moleculares que se desarrollaran con mas profundidad en diferntes asignaturas del Grado en Química.
Química Física II es una asignatura importante para el futuro de los estudiantes puesto que mas del 50% de PIB de EEUU y de la Unión Europea esta basado en aplicaciones derivadas de la Mecánica Cuántica. Es una asignatura básica para abordar temas más complejos en el ámbito de la Química Física como el estudio de moléculas poliatómicas , reactividad química , termodinámica estadística, etc.
Competencias propias de la asignatura | |
---|---|
Código | Descripción |
CB01 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. |
CB03 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. |
E08 | Conocer los principios de la mecánica cuántica y su aplicación a la estructura de átomos y moléculas. |
E14 | Conocer y saber aplicar la metrología de los procesos químicos, incluyendo la gestión de la calidad. |
E15 | Saber manejar la instrumentación química estándar y ser capaz de elaborar y gestionar procedimientos normalizados de trabajo en el laboratorio e industria química. |
E16 | Planificar, diseñar y desarrollar proyectos y experimentos. |
E17 | Desarrollar la capacidad para relacionar entre sí las distintas especialidades de la Química, así como ésta con otras disciplinas (carácter interdisciplinar). |
G01 | Conocer los principios y las teorías de la Química, así como las metodologías y aplicaciones características de la química analítica, química física, química inorgánica y química orgánica, entendiendo las bases físicas y matemáticas que precisan. |
G02 | Ser capaces de reunir e interpretar datos, información y resultados relevantes, obtener conclusiones y emitir informes razonados en problemas científicos, tecnológicos o de otros ámbitos que requieran el uso de herramientas químicas. |
G04 | Saber comunicar, de forma oral y escrita, los conocimientos, procedimientos y resultados de la Química, tanto a nivel especializado como no especializado. |
T10 | Capacidad de utilización de software específico para química a nivel de usuario. |
T11 | Capacidad de obtener información bibliográfica, incluyendo recursos en Internet. |
Resultados de aprendizaje propios de la asignatura | |
---|---|
Descripción | |
Capacidad para resolver problemas químicos aplicando las metodologías propias de la química física. | |
Capacidad para utilizar de forma correcta el lenguaje científico. | |
Capacidad para buscar, comprender y utilizar de la información bibliográfica y técnica relevante. | |
Capacidad para comprender y predecir el comportamiento y la reactividad de átomos y moléculas a partir de sus características estructurales, que podrán determinarse a partir de datos espectroscópicos o de cálculos químicocuánticos. | |
Resultados adicionales | |
Descripción | |
- Capacidad para utilizar de forma correcta el lenguaje científico. - Capacidad para buscar comprender y utilizar la información bibliográfica y técnica relevante. - Desarrollar la capacidad de trabajar en equipo en los seminarios y sesiones de laboratorio. |
Actividad formativa | Metodología | Competencias relacionadas | ECTS | Horas | Ev | Ob | Descripción | |
Enseñanza presencial (Teoría) [PRESENCIAL] | Método expositivo/Lección magistral | E08 G01 G02 | 0.8 | 20 | N | N | Enseñanza presencial donde se impartirán los conceptos teóricos y resolución de ejercicios tipo . (G1, G2,E8 ) Se indicará al alumno los mejores recursos para la preparación de las actividades docentes desarrolladas y se animará a los mismos para que participen con sugerencias, dudas, etc. que vayan surgiendo durante su trabajo en el aula o bien durante el trabajo personal que cada alumno haya realizado fuera de la misma El alumno dispondrá del material relacionado con la asignatura en Campus Virtual (Moodle) y en la página web de las profesoras de la asignatura. Para impartir la asignatura, se utilizarán tanto la pizarra como transparencias o presentaciones en Power Point. Elegiremos, en cada caso, aquél medio que permita al alumno aprender mejor los objetivos propuestos previamente para esta asignatura. | |
Estudio o preparación de pruebas [AUTÓNOMA] | Trabajo autónomo | E17 G01 | 2.6 | 65 | N | N | Se estudiarán los conceptos teóricos abordados en las clases magistrales y trabajará los problemas propuestos en seminarios. | |
Talleres o seminarios [PRESENCIAL] | Resolución de ejercicios y problemas | E08 G01 G02 G04 | 0.56 | 14 | N | N | Resolución de problemas por parte del alumno, previamente planteados y guiados por el profesor.(G1, G2, G4, E8, T8) | |
Prácticas de laboratorio [PRESENCIAL] | Prácticas | E08 E14 E17 G02 G04 T10 | 0.52 | 13 | S | S | Manejo del material de laboratorio., utilización de técnicas y operaciones básicas, obtención y análisis de resultados.(G2, G4, E8, E17, T7, T8, T10) | |
Resolución de problemas o casos [PRESENCIAL] | Resolución de ejercicios y problemas | CB01 E08 G01 G02 | 0.24 | 6 | S | N | El estudiante resolverá de forma autónoma una serie supuestos prácticos . | |
Otra actividad no presencial [AUTÓNOMA] | Prácticas | T11 | 0.4 | 10 | S | S | Estudio previo y elaboración de informes relacionado con las actividades practicas. Estudio posterior a la realización de las mismas | |
Prácticas en aulas de ordenadores [PRESENCIAL] | Prácticas | G01 G02 T10 | 0.12 | 3 | S | S | Se realizara un supuesto practico empleando la metodología y el software adecuado y guiado por el profesor. | |
Estudio o preparación de pruebas [AUTÓNOMA] | Trabajo autónomo | E08 E14 G01 | 0.6 | 15 | S | N | Estudio de las pruebas de evaluación finales | |
Prueba parcial [PRESENCIAL] | Pruebas de evaluación | CB01 CB03 E08 G01 G02 | 0.06 | 1.5 | S | N | El profesor planteará un supuesto práctico y un cuestionario tipo test | |
Prueba final [PRESENCIAL] | Pruebas de evaluación | E08 G01 | 0.1 | 2.5 | S | S | Resolucion de cuestiones teoricas y problemas de todos los temas del temario | |
Total: | 6 | 150 | ||||||
Créditos totales de trabajo presencial: 2.4 | Horas totales de trabajo presencial: 60 | |||||||
Créditos totales de trabajo autónomo: 3.6 | Horas totales de trabajo autónomo: 90 |
Ev: Actividad formativa evaluable Ob: Actividad formativa de superación obligatoria (Será imprescindible su superación tanto en evaluación continua como no continua)
Sistema de evaluación | Evaluacion continua | Evaluación no continua * | Descripción |
Pruebas parciales | 30.00% | 0.00% | Prueba escrita para evaluar el grado de aprendizaje de los contenidos impartidos correspondientes a los 4 primeros temas . |
Prueba final | 30.00% | 80.00% | Se realizará una prueba global escrita para evaluar el aprendizaje de los conceptos teóricos y de la parte prácticas con la resolución correcta de casos prácticos. Examen con cuestiones y problemas sobre los contenidos impartidos en la asignatura. Será de 60 % cuando la prueba implique la evaluación de todo el temario de la asignatura en EC o del 80 % en ENC |
Realización de prácticas en laboratorio | 20.00% | 20.00% | Participar activamente en las clases prácticas de laboratorio. Se valorará la destreza adquirida en el manejo de las diferentes técnicas analíticas o software, así como la adecuada elaboración del cuaderno del laboratorio/memoria y la realización de los cuestionarios tipo test propuestos para estas actividades prácticas antes y después de la práctica. |
Valoración de la participación con aprovechamiento en clase | 20.00% | 0.00% | Realizar una evaluación continua sobre aprendizaje basado en la resolución y exposición de los problemas propuestos, resolución de cuestionarios, así como otro tipo de actividades que se proponga. |
Total: | 100.00% | 100.00% |
No asignables a temas | |
---|---|
Horas | Suma horas |
Tema 1 (de 8): INTRODUCCIÓN Y POSTULADOS DE LA MECÁNICA CUÁNTICA. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 4 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 4 |
Talleres o seminarios [PRESENCIAL][Resolución de ejercicios y problemas] | 2.5 |
Prueba parcial [PRESENCIAL][Pruebas de evaluación] | .35 |
Prueba final [PRESENCIAL][Pruebas de evaluación] | .36 |
Periodo temporal: febrero |
Tema 2 (de 8): ESTUDIO MECANOCUÁNTICO DE ALGUNOS SISTEMAS SENCILLOS CON MOVIMIENTO LINEAL. Partícula libre. Partícula en una caja monodimensional. Números cuánticos. Energía residual en el punto cero. Partícula en una caja tridimensional. Estados degenerados. Barreras de potencial. Efecto túnel. Oscilador armónico unidimensional. Comparación de los resultados clásico y cuántico. Reducción del problema de dos partículas al problema de una partícula. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 2 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 9 |
Talleres o seminarios [PRESENCIAL][Resolución de ejercicios y problemas] | 1.5 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 1 |
Prueba parcial [PRESENCIAL][Pruebas de evaluación] | .37 |
Prueba final [PRESENCIAL][Pruebas de evaluación] | .36 |
Periodo temporal: febrero |
Tema 3 (de 8): MOMENTO ANGULAR Y MOVIMIENTO DE ROTACIÓN. El momento angular en Mecánica Cuántica. Coordenadas polares esféricas. Funciones y valores propios de los operadores. Armónicos esféricos. Cuantización espacial. Campos de fuerzas centrales. Sistema de dos partículas con un potencial central. Rotor rígido. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 2 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 9 |
Talleres o seminarios [PRESENCIAL][Resolución de ejercicios y problemas] | 1 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 1 |
Prueba parcial [PRESENCIAL][Pruebas de evaluación] | .37 |
Prueba final [PRESENCIAL][Pruebas de evaluación] | .36 |
Periodo temporal: febrero |
Tema 4 (de 8): EL ÁTOMO DE HIDRÓGENO. El átomo de hidrógeno como sistema de fuerzas centrales. Solución de la ecuación radial para un potencial culombiano. Orbitales hidrogenoides. Significado físico. Representación. Funciones de distribución de probabilidad. Interacción con un campo magnético: Cuantización espacial. Efecto Zeeman.Spin electrónico. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 4 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 11 |
Talleres o seminarios [PRESENCIAL][Resolución de ejercicios y problemas] | 3 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 1 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 7 |
Prueba parcial [PRESENCIAL][Pruebas de evaluación] | .41 |
Prueba final [PRESENCIAL][Pruebas de evaluación] | .36 |
Periodo temporal: marzo |
Tema 5 (de 8): ÁTOMOS POLIELECTRONICOS. Estado fundamental del átomo de He. Principio de exclusión de Pauli. Determinantes de Slater. Métodos aproximados para resolver la ecuación de Schrödinger. Método de variaciones. Teoría de perturbaciones. Comparación de ambos métodos para el estado fundamental del átomo de He. Momento angular en átomos polieelectrónicos. Términos espectrales correspondientes a una configuración electrónica. Regla de Hund. Interacción spin-orbita. Acoplamiento j-j. Sistema periódico de los elementos. Principio Aufbau. Espectros atómicos. Reglas de selección. Estructura fina de los espectros. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 2 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 5 |
Talleres o seminarios [PRESENCIAL][Resolución de ejercicios y problemas] | 2 |
Prueba final [PRESENCIAL][Pruebas de evaluación] | .35 |
Periodo temporal: marzo |
Tema 6 (de 8): ESTRUCTURA ELECTRONICA DE LAS MOLECULAS DIATOMICAS. Hamiltoniano molecular. Aproximación de Born-Oppenheimer. Molécula ion de hidrógeno. Método de Orbitales Moleculares. Aproximación OM-CLOA y aplicación a la molécula ion de hidrógeno. Tipos y simetría de OM. Curvas de energía potencial. Tratamiento de la molécula de hidrógeno mediante el método de OM. Configuraciones electrónicas de moléculas diatómicas homonucleares. Términos electrónicos moleculares. Tratamiento de las moléculas diatómicas heteronucleares mediante el método de OM. Método de enlace de valencia. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 2 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 5 |
Talleres o seminarios [PRESENCIAL][Resolución de ejercicios y problemas] | 2 |
Prueba final [PRESENCIAL][Pruebas de evaluación] | .35 |
Periodo temporal: marzo-abril |
Tema 7 (de 8): INTRODUCCIÓN A LA ESPECTROSCOPIA MOLECULAR. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 4 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 12 |
Talleres o seminarios [PRESENCIAL][Resolución de ejercicios y problemas] | 2 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 3 |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 8 |
Prueba final [PRESENCIAL][Pruebas de evaluación] | .36 |
Periodo temporal: abril-mayo |
Tema 8 (de 8): PRACTICAS DE LABORATORIO : 1.- Representación de orbitales atómicos y moleculares con Matlab. 2.- Espectrocopía de rotación-vibración: Espectro IR de CO. 3.- Espectroscopía de emisión atómica. Espectros atómicos: Hidrogeno. Cálculo de terminos espectrales de un metal alcalino. 4- Espectro de absorción UV - visible de un colorante. | |
---|---|
Actividades formativas | Horas |
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo] | 10 |
Prácticas de laboratorio [PRESENCIAL][Prácticas] | 13 |
Otra actividad no presencial [AUTÓNOMA][Prácticas] | 10 |
Prácticas en aulas de ordenadores [PRESENCIAL][Prácticas] | 3 |
Prácticas en aulas de ordenadores [PRESENCIAL][Prácticas] | 15 |
Periodo temporal: febrero-marzo |
Actividad global | |
---|---|
Actividades formativas | Suma horas |
Autor/es | Título | Libro/Revista | Población | Editorial | ISBN | Año | Descripción | Enlace Web | Catálogo biblioteca |
---|---|---|---|---|---|---|---|---|---|
A, Requena y J. Zuñiga | Espectroscopia | Madrid | Pearson Educación | 84-205-3677-6. | 2004 | ||||
A. Requena y J. Zúñiga | Química Física: Problemas de Espectroscopia | Madrid | Prentice Hall | 8483223678 | 2007 | ||||
G. R. Mortimer | Physical Chemistry | libro electronico | San Diego USA | Academic Press | 9780125083454. 97800 | 2000 | |||
I. N. Levine ( traduccion A, Requena et al.) | Quimica Cuantica 5 th ed. | Madrid | Prentice Hall | 84-205-3096-4. | 2005 | ||||
I.N. Levine | Problemas de Fisico Química | Mc Graw Hill | 84-481-9833-6 | 2005 |
![]() |
||||
I.N. Levine, Vol. 2 | Fisicoquímica | Madrid | McGraw-Hill | 84448106172 | 2004 | ||||
J . Bertrán Rusca y col | Química Cuántica | Madrid | Sintesis | 84-7738-742-7 | 2002 | ||||
L.E. Bailey y M:D.Troitiño | la Quimica Cuantica en 100 problemas. | Madrid | UNED | 9788476654637 | 2004 | ||||
N. B . Sing | Physical Chemistry | libro electronico | Nueva Delhi | New Age International | 9788122424034. 97881 | 2009 | http://eds.b.ebscohost.com/eds/detail/detail?vid=1&sid=fc96fcc9-0f40-41ac-8b90-f9ff8318d12b%40pdc-v-sessmgr03&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3d%3d#AN=307445&db=nlebk | ||
P. Atkins, J. de Paula | Physical Chemistry 8th ed | Oxford U.K | Oxford University Press | 0-19-870072-5 | 2006 | Hay diferentes ediciones | |||
P.W. Atkins | Fisicoquímica | Madrid | Panamerica | 9789500612487 | 2008 |