Guias Docentes

  GUÍA DOCENTE DE LA ASIGNATURA: LÓGICA    
1. Datos generales
Asignatura: LÓGICA Código: 42310
Tipología: FORMACIÓN BÁSICA Créditos ECTS: 6
Grado: 346 - GRADO EN INGENIERÍA INFORMÁTICA (AB) Curso académico: 2016-17
Centro: (604) E.S. DE INGENIERIA INFORMATICA ALBACETE Grupo(s): 10 11
Curso: 2 Duración: Primer cuatrimestre
Lengua principal de impartición: Español Segunda lengua:
Uso docente de otras lenguas: English Friendly: No
Página Web: http://www.esiiab.uclm.es/asig.php?codasig=42310&curso=2011-12&idmenup=planestudios
Nombre del profesor: JUAN ANGEL ALEDO SANCHEZ - Grupo(s) impartido(s): 10
 
Despacho Departamento Teléfono Correo electrónico Horario de tutoría
ESII de Albacete, despacho 0.C.1 MATEMÁTICAS 2189 juanangel.aledo@uclm.es Se anunciará en la plataforma virtual
Nombre del profesor: HERMENEGILDA MACIA SOLER - Grupo(s) impartido(s): 11
 
Despacho Departamento Teléfono Correo electrónico Horario de tutoría
Infante Don Juan Manuel,1.B.6 MATEMÁTICAS 2474 hermenegilda.macia@uclm.es Se anunciará en la plataforma virtual
Nombre del profesor: JAIME PENABAD VAZQUEZ - Grupo(s) impartido(s): 10 11
 
Despacho Departamento Teléfono Correo electrónico Horario de tutoría
ESII de Albacete, despacho 1.B.10 MATEMÁTICAS 2477 jaime.penabad@uclm.es Se anunciará en la plataforma virtual
2. Requisitos previos

Aunque el desarrollo de la materia es auto-contenido y no se exigen requisitos previos, se recomienda haber cursado la asignatura Álgebra y Matemática Discreta, toda vez que el concepto de aplicación formaliza conceptos lógicos relevantes (como, por ejemplo, el de interpretación, de modelo y de operación lógica), y los conceptos algebraicos de conjunto y relación aparecen asociados al de predicado lógico, al tiempo que las operaciones conjuntistas aparecen también ligadas a las operaciones lógicas.

3. Justificación en el plan de estudios, relación con otras asignaturas y con la profesión

La lógica simbólica o lógica matemática estudia la lógica utilizando técnicas y nociones matemáticas. La mayoría de los informáticos reconocen la íntima conexión existente entre la lógica y la informática, comparable en importancia a la relación existente entre el análisis matemático o el cálculo y la física. Puede decirse que la lógica representa “el cálculo de la informática” por la magnitud de su impacto en esta área, que es incluso superior al que históricamente ha tenido en el propio campo de las matemáticas. En contraste con las ciencias naturales, la informática se relaciona con procesos que son sintéticos, ya que la mayor parte de los mismos son una creación humana. Esta diferencia puede proporcionar una explicación del porqué la lógica ha encontrado, en las ciencias de la computación, tantas y tan justificadas aplicaciones, que abarcan desde el diseño del hardware hasta la ingeniería del software, pasando por la IA o la web semántica, que dota a las páginas Web de información suplementaria que permite utilizar criterios de búsqueda semánticos, mecanismos deductivos, restricciones de consistencia o integridad, etc.

Desde una perspectiva general la lógica ha jugado diferentes papeles en el campo de la informática:

  1. Como una fuente de lenguajes y sistemas para el razonamiento, debido a su capacidad deductiva.
  2. Como una fuente de herramientas y técnicas de análisis y fundamentación.

Desde una perspectiva más concreta, el estudio de la lógica proporciona técnicas para abordar distintos problemas, tanto teóricos como prácticos, del ámbito de la informática:

  1. La lógica se ha empleado como una herramienta para la representación del conocimiento, mediante la traducción del lenguaje natural, en el que se describe un problema, al lenguaje formal de la lógica. También como ayuda en la definición de técnicas más elaboradas de representación del conocimiento.
  2. La lógica se ha utilizado para proporcionar un modelo de cómputo. El lambda-cálculo y la reducción de lambda-expresiones a formas normales, o bien la lógica de cláusulas de Horn y el principio de resolución SLD representan visiones idealizadas de la idea de cómputo.
  3. La lógica también se ha empleado para establecer una descripción formal del significado (semántica) de los lenguajes de programación y en la especificación y verificación formal de programas. El desarrollo de métodos deductivos (semánticas operacionales) están en la base de las técnicas de implementación de los lenguajes de programación.
  4. Se conoce desde hace tiempo la efectividad de la lógica como lenguaje de gestión, representación e interrogación de bases de datos, y para la comprensión del lenguaje natural.
  5. También son muy populares las conexiones entre la lógica booleana y los circuitos digitales, El álgebra de Boole constituye el soporte teórico sobre el que se implementan los ordenadores modernos.
  6. Reciente es el uso de lógicas para el análisis de protocolos (servicios Web, protocolos criptográficos, etc), donde hay restricciones específicas relativas a la privacidad, integridad, autenticidad o secreto de la información que se almacena y manipula.
  7. Más aún, es importante destacar sus importantes repercusiones prácticas ya que la teoría, técnicas y herramientas basadas en lógicas están teniendo un impacto cada vez mayor en la resolución de numerosos problemas computacionales en la industria.

Finalmente, la influencia de la teoría de tipos en el desarrollo de los lenguajes de programación, la efectividad de la lógica en el análisis de la complejidad computacional, el soporte que brinda la lógica epistémica (o lógica del conocimiento) a los mecanismos de razonamiento en sistemas multi-agente, el papel de la lógica temporal en el campo de la verificación automática y las conexiones entre programación lógica y demostración automática, por citar sólo algunos, justifican la inclusión de la lógica dentro del plan de estudios de una ingeniería informática.  

La asignatura de Lógica se integra en la materia de Fundamentos Matemáticos de la Informática del plan de estudios y sirve de apoyo a las siguientes materias y asignatura

Formación Básica:

  • Fundamentos de Programación I y II,
  • Tecnología de Computadores.

Común a la Rama de la informática:

  • Metodología de la Programación,
  • Programación concurrente y Tiempo Real,
  • Bases de Datos,
  • Sistemas inteligentes.

Tecnología Específica de Ingeniería del Software: 

  • Ingeniería de Requisitos.

Tecnología Específica de Computación:

  • Teoría de Autómatas y Computación,
  • Sistemas basados en el Conocimiento,
  • Minería de Datos,
  • Programación Declarativa.
4. Competencias de la titulación que la asignatura contribuye a alcanzar
Competencias propias de la asignatura
BA3 Capacidad para comprender y dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para la resolución de problemas propios de la ingeniería.
INS1 Capacidad de análisis, síntesis y evaluación.
INS4 Capacidad de resolución de problemas aplicando técnicas de ingeniería.
INS5 Capacidad para argumentar y justificar lógicamente las decisiones tomadas y las opiniones.
SIS1 Razonamiento crítico.
SIS3 Aprendizaje autónomo.
UCLM3 Correcta comunicación oral y escrita.
5. Objetivos o resultados de aprendizaje esperados
Resultados propios de la asignatura
Comprender y saber utilizar la técnica de definición por inducción (recursión) y su singular importancia en la programación de ordenadores.
Conocer la lógica de proposiciones y lógica de predicados desde una perspectiva sintáctica y semántica.
Conocer las propiedades formales de la lógica: corrección, consistencia, completitud, y decidibilidad.
Resultados adicionales
Conocer la implicación lógica y sus expresiones asociadas. Saber deducir la verdad de expresiones de la lógica de proposiciones.
Saber discutir la verdad de una expresión (proposición) lógica arbitraria.
Saber discutir la unificación de predicados. Saber aplicar la regla de resolución.
Conocer la sintaxis de los programas lógicos, su semántica operacional y declarativa (por teoría de modelos).
Conocer la noción de conjunto borroso y saber discutir el complementario, el contenido y las operaciones. Conocer la noción de relación binaria borrosa y saber identificar las relaciones de similaridad y los órdenes borrosos.
Conocer los rasgos característicos de la lógica borrosa. Conocer la sintaxis de la lógica borrosa.
Conocer las (posibles) funciones de verdad de la conjunción, disyunción e implicación borrosa. Saber interpretar expresiones arbitrarias de la lógica borrosa.
6. Temario / Contenidos
 Tema 1 Lógica de Proposiciones
 Tema 1.1  Proposición
 Tema 1.2  Conectivos. Propiedades
 Tema 1.3  Álgebra de Boole de proposiciones
 Tema 1.4  Implicación lógica. Expresiones asociadas
 Tema 1.5  Formas de demostración matemática
 Tema 1.6  Sintaxis: alfabeto, fórmulas
 Tema 2 Semántica. Resolución proposicional
 Tema 2.1  Interpretación y modelo de una fórmula
 Tema 2.2  Tautologías, contradicciones, contingencias y fórmulas satisfactibles
 Tema 2.3  Valided y consecuencia lógica
 Tema 2.4  Forma clausulada de la lógica de proposiciones
 Tema 2.5  Regla de resolución. Corrección y completitud
 Tema 3 Lógica de predicados
 Tema 3.1  Predicado. Cuantificadores
 Tema 3.2  Conjuntos, Relaciones y Predicados
 Tema 3.3  Lenguaje de primer orden
 Tema 3.4  Universo de Herbrand. Base de Herbrand
 Tema 3.5  Modelo Mínimo de Herbrand
 Tema 4 Unificación y Resolución de predicados
 Tema 4.1  Forma clausulada de la lógica de predicados
 Tema 4.2  Sustitución y operación de sustitución
 Tema 4.3  Unificación de predicados
 Tema 4.4  Resolución. Corrección y completitud
 Tema 4.5  Estrategias de Resolución. SLD-Resolución
 Tema 4.6  Demostración automática
 Tema 5 Conjuntos borrosos
 Tema 5.1  Conjunto borroso. Subconjuntos. Conjunto normalizado
 Tema 5.2  Lambda-corte de un conjunto borroso
 Tema 5.3  Complementario. Unión e intersección
 Tema 5.4  Relaciones borrosas. Rango y dominio
 Tema 5.5  Composición borrosa. Composición unaria
 Tema 5.6  Similitudes y órdenes borrosos
 Tema 6 Lógica borrosa
 Tema 6.1  Diferencias con la lógica tradicional
 Tema 6.2  Predicados borrosos. Proposición borrosa. Grado de verdad
 Tema 6.3  Proposiciones compuestas
 Tema 6.4  Implicaciones borrosas. Inferencia borrosa
 Tema 6.5  Modificadores lingüísticos. Valores de verdad
 Tema 6.6  Aplicaciones
  Comentarios adicionales sobre el temario

7. Actividades o bloques de actividad y metodología

Actividad formativa Metodología Competencias relacionadas ECTS Horas Ev Ob Rec Descripción
Enseñanza presencial (Teoría) [PRESENCIAL] Método expositivo/Lección magistral BA3, INS1, INS5, SIS1 1.10 27.50 No No
Enseñanza presencial (Prácticas) [PRESENCIAL] Resolución de ejercicios y problemas INS1, INS4, INS5, SIS1, SIS3, UCLM3 1.00 25.00 No
Elaboración de informes o trabajos [AUTÓNOMA] Trabajo dirigido o tutorizado BA3, INS1, INS4, INS5, SIS1, SIS3, UCLM3 1.20 30.00 No No
Pruebas de progreso [PRESENCIAL] Pruebas de evaluación BA3, INS1, INS4, UCLM3 0.20 5.00
Prueba final [PRESENCIAL] Pruebas de evaluación BA3, INS1, INS4, UCLM3 0.08 2.00
Estudio o preparación de pruebas [AUTÓNOMA] Autoaprendizaje BA3, INS4, INS5, SIS1, SIS3 2.40 60.00 No
Presentación de trabajos o temas [PRESENCIAL] Trabajo en grupo BA3, INS5, UCLM3 0.10 2.50 No
Total: 6.08 152.00  
Créditos totales de trabajo presencial: 2.48 Horas totales de trabajo presencial: 62.00
Créditos totales de trabajo autónomo: 3.60 Horas totales de trabajo autónomo: 90.00
Ev: Actividad formativa evaluable
Ob: Actividad formativa de superación obligatoria
Rec: Actividad formativa recuperable
8. Criterios de evaluación y valoraciones

  Valoraciones  
Sistema de evaluación Estud. pres. Estud. semipres. Descripción
Pruebas de progreso 60.00% 0.00% La evaluación contempla dos pruebas parciales teórico-prácticos que coresponden a un 60% de la nota global ([ESC]). Alternativamente, el alumno podrá obtener este 60% de la nota en la prueba final de la asignatura.
Elaboración de trabajos teóricos 20.00% 0.00% Los alumnos, organizados en grupos de (un máximo de) 4 o 5 estudiantes, elaborarán dos trabajos dirigidos a lo largo del curso. Cada uno de ellos supondrá un 10% de la calificación tota([INF]).
Resolución de problemas o casos 10.00% 0.00% Resolución de dos casos teórico-prácticos, 5% cada uno ([LAB]).
Presentación oral de temas 10.00% 0.00% Defensa oral de un trabajo en grupo ([PRES]).
Total: 100.00% 0.00%  

Criterios de evaluación de la convocatoria ordinaria:
Ver el apartado "Sistemas de Evaluación"
Particularidades de la convocatoria extraordinaria:
El alumno se examinará de la materia total del curso, pudiendo obtener hasta un 60% de la calificación global.
Particularidades de la convocatoria especial de finalización:
En esta convocatoria se evaluarán los contenidos de la asignatura en una prueba escrita global.
9. Secuencia de trabajo, calendario, hitos importantes e inversión temporal
No asignables a temas
Actividades formativas Horas
Prueba final [PRESENCIAL] [Pruebas de evaluación] (2 h tot.) 2
Tema 1 (de 6): Lógica de Proposiciones
Actividades formativas Horas
Enseñanza presencial (Teoría) [PRESENCIAL] [Método expositivo/Lección magistral] (27.5 h tot.) 4.5
Enseñanza presencial (Prácticas) [PRESENCIAL] [Resolución de ejercicios y problemas] (25 h tot.) 5.5
Estudio o preparación de pruebas [AUTÓNOMA] [Autoaprendizaje] (60 h tot.) 10
Periodo temporal: 3 semanas
Grupo 10
Fecha de inicio: 12/09/2016 Fecha de fin: 02/10/2016
Grupo 11
Fecha de inicio: 12/09/2016 Fecha de fin: 02/10/2016
Tema 2 (de 6): Semántica. Resolución proposicional
Actividades formativas Horas
Enseñanza presencial (Teoría) [PRESENCIAL] [Método expositivo/Lección magistral] (27.5 h tot.) 4
Enseñanza presencial (Prácticas) [PRESENCIAL] [Resolución de ejercicios y problemas] (25 h tot.) 3
Elaboración de informes o trabajos [AUTÓNOMA] [Trabajo dirigido o tutorizado] (30 h tot.) 10
Pruebas de progreso [PRESENCIAL] [Pruebas de evaluación] (5 h tot.) 1
Estudio o preparación de pruebas [AUTÓNOMA] [Autoaprendizaje] (60 h tot.) 8
Periodo temporal: 2 semanas
Grupo 10
Fecha de inicio: 03/10/2016 Fecha de fin: 16/10/2016
Grupo 11
Fecha de inicio: 03/10/2016 Fecha de fin: 16/10/2016
Tema 3 (de 6): Lógica de predicados
Actividades formativas Horas
Enseñanza presencial (Teoría) [PRESENCIAL] [Método expositivo/Lección magistral] (27.5 h tot.) 6
Enseñanza presencial (Prácticas) [PRESENCIAL] [Resolución de ejercicios y problemas] (25 h tot.) 5
Pruebas de progreso [PRESENCIAL] [Pruebas de evaluación] (5 h tot.) 1
Estudio o preparación de pruebas [AUTÓNOMA] [Autoaprendizaje] (60 h tot.) 12
Periodo temporal: 3 semanas
Grupo 10
Fecha de inicio: 17/10/2016 Fecha de fin: 06/11/2016
Grupo 11
Fecha de inicio: 17/10/2016 Fecha de fin: 06/11/2016
Tema 4 (de 6): Unificación y Resolución de predicados
Actividades formativas Horas
Enseñanza presencial (Teoría) [PRESENCIAL] [Método expositivo/Lección magistral] (27.5 h tot.) 5
Enseñanza presencial (Prácticas) [PRESENCIAL] [Resolución de ejercicios y problemas] (25 h tot.) 5.5
Elaboración de informes o trabajos [AUTÓNOMA] [Trabajo dirigido o tutorizado] (30 h tot.) 10
Pruebas de progreso [PRESENCIAL] [Pruebas de evaluación] (5 h tot.) 1.5
Estudio o preparación de pruebas [AUTÓNOMA] [Autoaprendizaje] (60 h tot.) 12
Periodo temporal: 3 semanas
Grupo 10
Fecha de inicio: 07/11/2016 Fecha de fin: 27/11/2016
Grupo 11
Fecha de inicio: 07/11/2016 Fecha de fin: 27/11/2016
Tema 5 (de 6): Conjuntos borrosos
Actividades formativas Horas
Enseñanza presencial (Teoría) [PRESENCIAL] [Método expositivo/Lección magistral] (27.5 h tot.) 4
Enseñanza presencial (Prácticas) [PRESENCIAL] [Resolución de ejercicios y problemas] (25 h tot.) 4
Estudio o preparación de pruebas [AUTÓNOMA] [Autoaprendizaje] (60 h tot.) 8
Periodo temporal: 2 semanas
Grupo 10
Fecha de inicio: 28/11/2016 Fecha de fin: 11/12/2016
Grupo 11
Fecha de inicio: 28/11/2016 Fecha de fin: 11/12/2016
Tema 6 (de 6): Lógica borrosa
Actividades formativas Horas
Enseñanza presencial (Teoría) [PRESENCIAL] [Método expositivo/Lección magistral] (27.5 h tot.) 4
Enseñanza presencial (Prácticas) [PRESENCIAL] [Resolución de ejercicios y problemas] (25 h tot.) 2
Elaboración de informes o trabajos [AUTÓNOMA] [Trabajo dirigido o tutorizado] (30 h tot.) 10
Pruebas de progreso [PRESENCIAL] [Pruebas de evaluación] (5 h tot.) 1.5
Estudio o preparación de pruebas [AUTÓNOMA] [Autoaprendizaje] (60 h tot.) 10
Presentación de trabajos o temas [PRESENCIAL] [Trabajo en grupo] (2.5 h tot.) 2.5
Periodo temporal: 2 semanas
Grupo 10
Fecha de inicio: 12/12/2016 Fecha de fin: 23/12/2016
Grupo 11
Fecha de inicio: 12/12/2016 Fecha de fin: 23/12/2016
Actividad global
Actividades formativas Suma horas
Enseñanza presencial (Teoría) [PRESENCIAL] [Método expositivo/Lección magistral] 27.5
Enseñanza presencial (Prácticas) [PRESENCIAL] [Resolución de ejercicios y problemas] 25
Elaboración de informes o trabajos [AUTÓNOMA] [Trabajo dirigido o tutorizado] 30
Pruebas de progreso [PRESENCIAL] [Pruebas de evaluación] 5
Prueba final [PRESENCIAL] [Pruebas de evaluación] 2
Estudio o preparación de pruebas [AUTÓNOMA] [Autoaprendizaje] 60
Presentación de trabajos o temas [PRESENCIAL] [Trabajo en grupo] 2.5
Total horas: 152
Grupo 10
Inicio de actividades: 12/09/2016 Fin de las actividades: 23/12/2016
Grupo 11
Inicio de actividades: 12/09/2016 Fin de las actividades: 23/12/2016
Comentarios generales sobre la planificación: Esta planificación es orientativa, pudiendo variar a lo largo del curso en función de las necesidades docentes, festividades, etc.
Durante las primeras 5 semanas no se desdoblarán los grupos de prácticas, impartiéndose éstas en el primer tramo horario.
    La planificación temporal podrá verse modificada ante causas imprevistas
10. Bibliografía, recursos
Autor/es Título Editorial Población ISBN Año Descripción Enlace Web Catálogo biblioteca
Aledo, J. A., Penabad, J., Valverde, J. C. y Villaverde J. Álgebra y Matemática Discreta (2ª Edición) Popular Libros 84-931862-2-8 2002 Ficha de la biblioteca
Aledo, J. A., Penabad, J., Valverde, J. C. y Villaverde J. Problemas de Álgebra y Matemática Discreta I Popular Libros 84-931862-0-1 2001  
Aranda, J., Fernández, J. L. y Morilla, F. Lógica matemática Sanz y Torres 84-88667-05-1 1993 Ficha de la biblioteca
Deaño, A. Introducción a la lógica formal Alianza 978-84-206-8681-3 2007 Ficha de la biblioteca
Fernández, G. y Sáez-Vacas, F. Fundamentos de informática Alianza 84-206-8604-2 1987 Ficha de la biblioteca
Julián, P. Lógica simbólica para informáticos Ra-Ma 84-7897-619-1 2004 Ficha de la biblioteca
Julián, P. y Alpuente, M. Programación lógica : teoría y práctica Pearson Prentice Hall 978-84-8322-368-0 2007 Ficha de la biblioteca
Lloyd, J.W. Foundations of logic programming Springer-Verlag 3-540-18199-7 1993 Ficha de la biblioteca
Manzano, M. y Huertas, A. Lógica para principiantes Alianza 84-206-4570-2 2004 Ficha de la biblioteca
Nguyen, N., Walker E.A. A firts Course in Fuzzy Logic Chapman & Hall 978-1-58488-526-9 2006 Ficha de la biblioteca
Trillas, E., Alsina, C. y Terricabras, J. M. Introducción a la lógica borrosa Ariel 84-344-0482-6 1995 Ficha de la biblioteca

Web mantenido y actualizado por el Servicio de Informática.