Es aconsejable haber cursado las asignaturas de Fundamentos de Matemáticas I y II.
Un ingeniero en tecnologías de telecomunicación se caracteriza por el conocimiento profundo de los principios en que se basa su actuación y por su capacidad de calcular, es decir, de predecir comportamientos y obtener soluciones a problemas con el mínimo costo. La buena formación matemática de un ingeniero en tecnologías de telecomunicación se reconoce en su habilidad para plantear primero, y resolver después, modelos matemáticos de la realidad.
Las asignaturas de matemáticas en el Grado en Ingeniería de Tecnologías de Telecomunicación pretenden conseguir que el estudiante adquiera los conocimientos matemáticos que están en la base del desarrollo de las demás asignaturas que se imparten en esta titulación. Las matemáticas proporcionan un entrenamiento en el pensamiento racional, y constituyen uno de los principales instrumentos que se emplean en la obtención de información cuantitativa sobre los sistemas naturales. Son también importantes por su poder de síntesis, capacitando al ingeniero en tecnologías de telecomunicación para efectuar generalizaciones a partir de su experiencia. Y finalmente, su cultivo constituye un entrenamiento que favorece su capacidad de adaptación al futuro. En consecuencia, la enseñanza de las matemáticas para ingenieros tiene una triple finalidad:
- Enseñar al estudiante a razonar adecuada y lógicamente, con economía de pensamiento y con poder de generalización.
- Proporcionar al estudiante métodos útiles para abordar problemas que aparecen en las diferentes disciplinas de su carrera.
- Facilitar su capacidad de comprensión para poder resolver problemas técnicos nuevos con un contenido matemático significativo.
Las asignaturas de la titulación de Grado en Ingeniería de Tecnologías de Telecomunicación seguido en la Escuela Politécnica de Cuenca que tienen necesidades de los conocimientos factibles de impartirse en las asignaturas de matemáticas son principalmente las siguientes:
Gestión empresarial; Redes de comunicaciones I y II; Electrónica I y II; Sistemas electrónicos digitales; Antenas y radiocomunicaciones; Microondas; Medios de transmisión; Teoría de la comunicación; Comunicaciones; Comunicaciones ópticas; Infraestructuras de la telecomunicación; Sistemas de telecomunicación; Ingeniería acústica; Ruido y vibraciones; Acústica arquitectónica.
Competencias propias de la asignatura | |
---|---|
Código | Descripción |
E01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal, geometría, geometría diferencial, cálculo diferencial e integral, ecuaciones diferenciales y en derivadas parciales, métodos numéricos, algorítmica numérica, estadística y optimización. |
G02 | Una correcta comunicación oral y escrita. |
G06 | Conocimiento de materias básicas y tecnologías, que le capacite para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones. |
G13 | Capacidad de buscar y entender información, tanto técnica como comercial, en varias fuentes, relacionarla y estructurarla para integrar ideas y conocimientos. Análisis, síntesis y puesta en práctica de ideas y conocimientos. |
Resultados de aprendizaje propios de la asignatura | |
---|---|
Descripción | |
Comprensión del concepto de probabilidad y su utilización en casos reales. | |
Construcción de tablas estadísticas y cálculo de los parámetros asociados a las variables estadísticas. | |
Utilización de las distribuciones teóricas de probabilidad y su aplicación en casos reales. | |
Cálculos de longitudes, áreas y volúmenes utilizando integrales. | |
Uso de los contrastes de hipótesis para comprobar afirmaciones hechas sobre las poblaciones. | |
Uso de métodos numéricos para la resolución de ecuaciones y sistemas. | |
Diseño de modelos de estimación para parámetros poblacionales a partir de datos obtenidos de una muestra. | |
Realización de integrales. | |
Uso correcto de la expresión oral y escrita para transmitir ideas, tecnologías, resultados, etc. | |
Resultados adicionales | |
Descripción | |
- Reconocer problemas reales para cuya resolución se puedan utilizar métodos numéricos. | |
- Aplicar los conceptos básicos y técnicas fundamentales del cálculo numérico. | |
- Aplicar algunos métodos numéricos (de álgebra y cálculo) a la resolución de problemas reales. | |
- Aplicar los programas informáticos de cálculo a los conocimientos teóricos y prácticos adquiridos. | |
- Relacionar los conceptos teóricos y prácticos. | |
- Utilizar las nuevas tecnologías. | |
- Resolver problemas mediante interpolación. |
El temario se agrupa por BLOQUES de la siguiente forma:
BLOQUE 1: Temas 1 y 2.
BLOQUE 2: Temas 3 y 4.
BLOQUE 3: Tema 5
BLOQUE 4: Temas 6, 7, 8, 9 y 10.
LABORATORIO DE MATEMÁTICAS. Prácticas con programas informáticos.
El material didáctico empleado en el desarrollo de la asignatura, que está disponible en la plataforma campus virtual del curso, es:
- Apuntes y material de la asignatura (índice de contenidos, colección de ejercicios, apuntes, manual de prácticas, bibliografía, etc.).
- Software utilizado: Matlab y Excel
Con el temario de esta asignatura se contribuye a que el estudiante adquiera las siguientes partes de la competencia:
- E1: Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre estadística, optimización, métodos numéricos y algorítmica numérica.
Actividad formativa | Metodología | Competencias relacionadas (para títulos anteriores a RD 822/2021) | ECTS | Horas | Ev | Ob | Descripción | |
Enseñanza presencial (Teoría) [PRESENCIAL] | Método expositivo/Lección magistral | E01 G02 G06 | 1.24 | 31 | N | N | Desarrollo en el aula de los contenidos teóricos, utilizando el método de la lección magistral participativa. | |
Resolución de problemas o casos [PRESENCIAL] | Resolución de ejercicios y problemas | E01 G02 G06 | 0.8 | 20 | S | N | Resolución de ejercicios y problemas en el aula de manera participativa. Al finalizar cada Bloque se hará una sesión de resolución de ejercicios propuestos que deberán hacerse por el estudiante en el aula con el apoyo del profesor y que deberán entregarse al final de esa sesión. Esta actividad no es recuperable. | |
Prácticas en aulas de ordenadores [PRESENCIAL] | Prácticas | E01 G02 G06 G13 | 0.16 | 4 | S | S | Prácticas en el aula de informática con utilización del software específico. Entregar las memorias de estas prácticas es obligatorio. Aquel estudiante que en la convocatoria ordinaria no supere esta actividad podrá recuperarla en la convocatoria extraordinaria con una prueba final. | |
Elaboración de informes o trabajos [AUTÓNOMA] | Trabajo en grupo | E01 G02 G06 G13 | 1.6 | 40 | S | S | De cada uno de los temas que componen cada bloque, se deben entregar ejercicios que no hayan sido resueltos en clase. Se deben realizar en grupos de 2 estudiantes. Aquel estudiante que en la convocatoria ordinaria no supere esta actividad podrá recuperarla en la convocatoria extraordinaria haciendo de nuevo las entregas. | |
Presentación de trabajos o temas [PRESENCIAL] | Combinación de métodos | E01 G02 G06 G13 | 0.06 | 1.5 | S | S | Entrega, exposición, defensa y evaluación de trabajos en el despacho del profesor o a través de la aplicación Teams. Esta actividad es obligatoria. Aquel estudiante que en la convocatoria ordinaria no supere esta actividad podrá recuperarla en la convocatoria extraordinaria del mismo modo que en la ordinaria. | |
Tutorías individuales [PRESENCIAL] | Otra metodología | E01 G02 G06 G13 | 0.01 | 0.25 | N | N | Interacción directa entre profesor y el estudiante. El estudiante podrá ser atendido por el profesor para resolver cualquier duda académica de la materia. El horario de atención será publicado al comienzo del semestre. Aunque se haya valorado el tiempo de atención en ECTS, cada estudiante utilizará el tiempo que le resulte necesario según sus necesidades. | |
Estudio o preparación de pruebas [AUTÓNOMA] | Autoaprendizaje | E01 G02 G06 G13 | 2 | 50 | N | N | Debe hacerse durante todo el semestre, con intensificación al finalizar el periodo lectivo. | |
Prueba final [PRESENCIAL] | Pruebas de evaluación | E01 G02 G06 G13 | 0.13 | 3.25 | S | S | Realización de un examen escrito que podrá constar de preguntas de teoría, cuestiones y problemas. Aquel estudiante que en la convocatoria ordinaria no supere esta actividad podrá recuperarla en la convocatoria extraordinaria del mismo modo. | |
Total: | 6 | 150 | ||||||
Créditos totales de trabajo presencial: 2.4 | Horas totales de trabajo presencial: 60 | |||||||
Créditos totales de trabajo autónomo: 3.6 | Horas totales de trabajo autónomo: 90 |
Ev: Actividad formativa evaluable Ob: Actividad formativa de superación obligatoria (Será imprescindible su superación tanto en evaluación continua como no continua)
Sistema de evaluación | Evaluacion continua | Evaluación no continua * | Descripción |
Valoración de la participación con aprovechamiento en clase | 5.00% | 5.00% | Se valorará la asistencia a las sesiones de resolución de ejercicios propuestos al finalizar cada Bloque, siempre que al finalizar se entreguen los ejercicios realizados por el estudiante en el aula. Estos ejercicios deberán ser realizados por el estudiante o por el grupo de trabajo en el aula con el apoyo del profesor y deberán entregarse al final de cada sesión. Se hará un ejercicio de cada tema y luego será expuesto y defendido cuando se entreguen, expongan y defiendan los demás ejercicios del Bloque. Esta actividad no es obligatoria, pero entonces no se podrá obtener el 5 % de la calificación final de la asignatura. Asimismo, en la calificación de los trabajos académicos tan solo se podrán obtener 7 puntos sobre los 10 posibles de cada tema. Los estudiantes que por causa justificada no puedan asistir a alguna de las sesiones deben ponerse en contacto con el profesor lo antes posible. |
Resolución de problemas o casos | 35.00% | 35.00% | Por la realización, exposición, entrega y defensa de 3 ejercicios de los propuestos en cada tema. Uno de estos ejercicios habrá sido realizado y entregado por el estudiante en la sesión especial de problemas realizada en el aula. Los otros dos ejercicios serán elegidos por el estudiante. Los 3 ejercicios se defenderán en el despacho del profesor o a través de la aplicación Teams en su horario de tutorías. Se deben hacer en grupos de 2 alumnos. Excepcionalmente se podrán realizar de forma individual o en grupos de 3 alumnos. No se pueden entregar ejercicios que ya hayan sido resueltos en el aula. La fecha límite para entregar los ejercicios será comunicada a través del Campus Virtual. La realización, exposición, entrega y defensa de los ejercicios de cada tema es OBLIGATORIA y hay que obtener una nota media (entre todos los temas de la asignatura) mínima de 4. Si el estudiante no hubiera asistido a la sesión especial de resolución de ejercicios en el aula y no hubiera entregado un ejercicio resuelto de cada tema, podrá entregar los 2 ejercicios restantes de cada tema pero la calificación final por la entrega, exposición y defensa de trabajos no podrá superar 7 puntos por tema de los 10 posibles. No obstante, si se justificara la no asistencia o se llevara evaluación no continua se podrían entregar los 3 ejercicios y optar a los 10 puntos. La calificación final obtenida en esta parte de la asignatura podrá guardarse para el siguiente curso académico siempre que la calificación obtenida sea mayor o igual a 6. |
Realización de actividades en aulas de ordenadores | 10.00% | 10.00% | Es obligatorio realizar y entregar las prácticas solicitadas. Hay que obtener un mínimo de 4. La calificación final obtenida en esta parte de la asignatura podrá guardarse para el siguiente curso académico siempre que la calificación obtenida sea mayor o igual a 6. |
Prueba final | 50.00% | 50.00% | Por la realización de un examen escrito que podrá constar de preguntas de teoría, cuestiones y problemas. Realizar este examen es OBLIGATORIO y hay que obtener un mínimo de 4. Los estudiantes que en la parte de realización, entrega y defensa de 3 ejercicios de los propuestos en cada tema y en la parte del Laboratorio de Matemáticas, no hayan alcanzado una calificación media mínima de 4 en cada una de las partes no podrán superar la asignatura, independientemente de la calificación obtenida en esta prueba final. |
Total: | 100.00% | 100.00% |
No asignables a temas | |
---|---|
Horas | Suma horas |
Elaboración de informes o trabajos [AUTÓNOMA][Trabajo en grupo] | 40 |
Presentación de trabajos o temas [PRESENCIAL][Combinación de métodos] | 1.5 |
Tutorías individuales [PRESENCIAL][Otra metodología] | .25 |
Estudio o preparación de pruebas [AUTÓNOMA][Autoaprendizaje] | 50 |
Prueba final [PRESENCIAL][Pruebas de evaluación] | 3.25 |
Tema 1 (de 11): Estadística descriptiva. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 2 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 1.5 |
Tema 2 (de 11): Introducción a la probabilidad. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 3 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 2.5 |
Comentario: Se incluye aquí 1 hora correspondiente a la sesión de problemas del Bloque I. |
Tema 3 (de 11): Variables aleatorias. Modelos teóricos de distribución. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 5 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 1.5 |
Tema 4 (de 11): Inferencia estadística. Estimación. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 5 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 2.5 |
Comentario: Se incluye aquí 1 hora correspondiente a la sesión de problemas del Bloque II. |
Tema 5 (de 11): Programación lineal y optimización. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 4 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 2 |
Comentario: Se incluye aquí 1 hora correspondiente a la sesión de problemas del Bloque III. |
Tema 6 (de 11): El tratamiento numérico de los problemas matemáticos. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 1 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 1 |
Tema 7 (de 11): Resolución aproximada de ecuaciones algebraicas. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 3 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 2 |
Tema 8 (de 11): Resolución numérica de sistemas de ecuaciones lineales. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 2 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 1 |
Tema 9 (de 11): Interpolación. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 3 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 1 |
Tema 10 (de 11): Integración y derivación numéricas. | |
---|---|
Actividades formativas | Horas |
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral] | 3 |
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] | 5 |
Comentario: Se incluyen aquí 2 horas correspondientes a la sesión de problemas del Bloque IV. |
Tema 11 (de 11): Laboratorio de matemáticas. Prácticas con Matlab. | |
---|---|
Actividades formativas | Horas |
Prácticas en aulas de ordenadores [PRESENCIAL][Prácticas] | 4 |
Actividad global | |
---|---|
Actividades formativas | Suma horas |
Comentarios generales sobre la planificación: | - Los temas se impartirán secuencialmente adaptándose al calendario real que se tenga en el semestre que se ubica la asignatura. El orden de impartición de los temas podrá alterarse por cualquier causa justificada. El Tema 11 se irá intercalando a lo largo del semestre. - Aunque se ha designado un tiempo a las tutorías el estudiante utilizará el tiempo que le resulte necesario según sus necesidades. - La fecha de la prueba final será en el mes de mayo de 2022 (convocatoria ordinaria) y junio de 2022 (convocatoria extraordinaria) en el día, hora y lugar que para tal efecto designe la Subdirección de Estudios de la Escuela. - El estudiante tendrá toda la información detallada en la plataforma Campus Virtual de la asignatura. También se anunciará en la plataforma virtual la fecha y hora de las prácticas obligatorias en el aula de ordenadores, de las sesiones especiales de problemas al finalizar el Bloque y de la entrega, exposición, defensa y evaluación de los trabajos de cada Bloque. |