

UNIVERSIDAD DE CASTILLA - LA MANCHA GUÍA DOCENTE

. DATOS GENERALES

Asignatura: PROGRAMACIÓN DE ROBOTS MÓVILES

Tipología: OPTATIVA

Grado: 420 - GRADO EN INGENIERÍA MECÁNICA (AB-2021)

Centro: 605 - E.T.S. DE INGENIERÍA INDUSTRIAL ALBACETE

Curso: 4

Lengua principal de

impartición:

Uso docente de otras lenguas:

Página web:

Código: 56345 Créditos ECTS: 6

Curso académico: 2023-24

Grupo(s): 11

Duración: C2

Segunda lengua:

English Friendly: N

Bilingüe: S

Profesor: ANTONIO FERNANDEZ CABALLERO - Grupo(s): 11							
Edificio/Despacho	Departamento	Teléfono Correo electrónico Horario de tutoría		Horario de tutoría			
Escuela Técnica Superior de	SISTEMAS INFORMÁTICOS	2406	antonio.fdez@uclm.es	Lunes de 10.30 a 13.30 horas. Martes der 8.30 a 11.00			
Ingenieros Industriales / 1.C.3	SISTEMAS INFORMATICOS	2400	amonio.idez@ucini.es	horas. Martes de 13.00 a 13.30 horas.			

2. REQUISITOS PREVIOS

Requisitos previos

El alumno debe conocer previamente conceptos básicos de informática y de programación.

Por todo ello, y para seguir adecuadamente esta asignatura, es recomendable que el alumno haya cursado previamente las asignaturas: 'Fundamentos de Informática'.

3. JUSTIFICACIÓN EN EL PLAN DE ESTUDIOS, RELACIÓN CON OTRAS ASIGNATURAS Y CON LA PROFESIÓN

Justificación en el plan de estudios, relación con otras asignaturas y con la profesión

Los conceptos y competencias proporcionados en esta asignatura forman parte de la mención MECATRÓNICA y, por tanto, complementan las asignaturas optativas de cuarto curso denominadas 'Sistemas Neumáticos', 'Sensores y Actuadores', 'Instrumentación Virtual' y 'Mecánica de Robots y Manipuladores'.

La asignatura se fundamenta, inicialmente, en los conceptos de programación aprendidos en la asignatura de 'Fundamentos de Informática', así como algunos de robótica vistos en la asignatura 'Robótica Industrial'.

En esta asignatura se proporcionan los conceptos y competencias básicas que un Ingeniero Técnico Industrial en la especialidad de Mecánica precisa en relación a la programación de los sensores, actuadores y control de los robots móviles.

4. COMPETENCIAS DE LA TITULACIÓN QUE LA ASIGNATURA CONTRIBUYE A ALCANZAR

Competencias propias de la asignatura

Código

Conocimiento de los fundamentos de la robótica móvil y sus modelos de razonamiento con objeto de saber utilizar las técnicas CEO₂₀

específicas en función del problema a resolver.

Conocimiento en materias básicas y tecnológicas, que capacite para el aprendizaje de nuevos métodos y teorías, y dote de CG03

versatilidad para adaptarse a nuevas situaciones.

CT02 Conocer y aplicar las Tecnologías de la Información y la Comunicación.

5. OBJETIVOS O RESULTADOS DE APRENDIZAJE ESPERADOS

Resultados de aprendizaje propios de la asignatura

Descripción

Programación de un simulador para robots móviles y algún robot móvil real, fundamentalmente en los aspectos relacionados con la navegación autónoma.

Resultados adicionales

Conocimiento del funcionamiento interno de los robots móviles (sensores, actuadores y control).

Habilidad en el manejo de librerías informáticas.

Habilidad en comunicación oral y escrita.

Habilidad en trabajo en equipo.

6. TEMARIO

Tema 1: Mobile Robots

Tema 2: Mobile Robot Architectures

Tema 3: Robot Behaviours Tema 4: Robot Locomotion

Tema 5: Robot Sensing Tema 6: Robot Vision

Tema 7: Motion Planning

Tema 8: Localisation and Mapping Tema 9: Robot Navigation

Tema 10: Learning in Mobile Robots

Tema 11: Multi-Robot Systems
Tema 12: Human-Robot Interaction

7. ACTIVIDADES O BLOQUES DE	7. ACTIVIDADES O BLOQUES DE ACTIVIDAD Y METODOLOGÍA							
Actividad formativa	Metodología	Competencias relacionadas (para títulos anteriores a RD 822/2021)	ECTS	Horas	Ev	Ob	Descripción	
Enseñanza presencial (Teoría) [PRESENCIAL]	Método expositivo/Lección magistral	CEO20 CG03	1.2	30	S		El profesor centrará el tema y se explicarán los contenidos fundamentales del mismo.	
Prácticas en aulas de ordenadores [PRESENCIAL]	Prácticas	CEO20 CT02	0.48	12	S	N	Consistirán en la realización, mediante pequeños grupos, de ejercicios prácticos y simulaciones con software específico.	
Resolución de problemas o casos [PRESENCIAL]	Resolución de ejercicios y problemas	CEO20 CG03 CT02	0.48	12	S	N	Consistirá en la participación en talleres y/o seminarios y la resolución de casos propuestos en los mismos.	
Pruebas de progreso [PRESENCIAL]	Pruebas de evaluación	CEO20 CG03	0.16	4	s	N	Consistirán en la realización de pruebas (hasta 4) relacionadas tanto con aspectos teóricos como de aplicación práctica.	
Prueba final [PRESENCIAL]	Pruebas de evaluación	CEO20 CG03 CT02	0.08	2	S	S	Versará sobre la totalidad de la asignatura, evaluando todos los aspectos teóricos y prácticos de la misma.	
Estudio o preparación de pruebas [AUTÓNOMA]	Trabajo autónomo		3.6	90	N	-		
Total:								
Créditos totales de trabajo presencial: 2.4				, .				
Créditos totales de trabajo autónomo: 3.6				Horas totales de trabajo autónomo: 90				

Ev: Actividad formativa evaluable

Ob: Actividad formativa de superación obligatoria (Será imprescindible su superación tanto en evaluación continua como no continua)

8. CRITERIOS DE EVALUACIÓN Y VALORACIONES						
Sistema de evaluación	Evaluacion continua	Evaluación no continua*	Descripción			
Realización de actividades en aulas de ordenadores	25.00% 25.00%		Se valorará el trabajo realizado por el alumno durante la realización de las prácticas a partir de una demostración del funcionamiento de los programas y la documentación entregada en las memorias escritas.			
Elaboración de memorias de prácticas	15.00%	115 00%	Se valorará tanto el contenido del trabajo presentado como la claridad en la expresión escrita.			
Pruebas de progreso	60.00%	60.00%	Se realizarán cuatro pruebas de progreso. Cada una de es pruebas de progreso deberá ser superada, como mínimo, c un 4 sobre 10. Es indispensable obtener una media superi igual a 4 sobre 10 en la totalidad de las pruebas de progres			
Total:	100.00%	100.00%				

^{*} En Evaluación no continua se deben definir los porcentajes de evaluación según lo dispuesto en el art. 4 del Reglamento de Evaluación del Estudiante de la UCLM, que establece que debe facilitarse a los estudiantes que no puedan asistir regularmente a las actividades formativas presenciales la superación de la asignatura, teniendo derecho (art. 12.2) a ser calificado globalmente, en 2 convocatorias anuales por asignatura, una ordinaria y otra extraordinaria (evaluándose el 100% de las competencias).

Criterios de evaluación de la convocatoria ordinaria:

Evaluación continua:

La convocatoria ordinaria consiste en un examen final que engloba toda la materia no superada.

Evaluación no continua:

La convocatoria ordinaria consiste en un examen final que engloba toda la materia del curso.

Particularidades de la convocatoria extraordinaria:

La convocatoria extraordinaria consiste en un examen final que engloba toda la materia.

No se guarda ninguna nota de las actividades realizadas durante el curso.

Particularidades de la convocatoria especial de finalización:

La convocatoria especial de finalización consiste en un examen final que engloba toda la materia.

No se guarda ninguna nota de las actividades realizadas en cursos anteriores.

9. SECUENCIA DE TRABAJO, CALENDARIO, HITOS IMPORTANTES E INVERSIÓN TEMPORAL No asignables a temas Horas Prácticas en aulas de ordenadores [PRESENCIAL][Prácticas] Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas] 12

L	
Pruebas de progreso [PRESENCIAL][Pruebas de evaluación]	4
Prueba final [PRESENCIAL][Pruebas de evaluación]	2
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo]	90
Tema 1 (de 12): Mobile Robots	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 2 (de 12): Mobile Robot Architectures	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 3 (de 12): Robot Behaviours	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 4 (de 12): Robot Locomotion	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 5 (de 12): Robot Sensing	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 6 (de 12): Robot Vision	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 7 (de 12): Motion Planning	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 8 (de 12): Localisation and Mapping	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 9 (de 12): Robot Navigation	
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 10 (de 12): Learning in Mobile Robots	-
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 11 (de 12): Multi-Robot Systems	_ ·
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Tema 12 (de 12): Human-Robot Interaction	2.0
Actividades formativas	Horas
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	2.5
Actividad global	2.0
Actividades formativas	Suma haraa
Enseñanza presencial (Teoría) [PRESENCIAL][Método expositivo/Lección magistral]	Suma horas 30
Prueba final [PRESENCIAL][Pruebas de evaluación]	2
Resolución de problemas o casos [PRESENCIAL][Resolución de ejercicios y problemas]	12
Prácticas en aulas de ordenadores [PRESENCIAL][Prácticas]	12
Pruebas de progreso [PRESENCIAL][Pruebas de evaluación]	4
Estudio o preparación de pruebas [AUTÓNOMA][Trabajo autónomo]	90
	Total horas: 150

10. BIBLIOGRAFÍA, RECURSO	S							
Autor/es	Título/Enlace Web	Editorial	Población ISBN	Año	Descripción			
H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, S. Thrun	Principles of Robot Motion: Theory, Algorithms, and Implementations	The MIT Press	978-0-272-03327-5	2005				
A. Ollero	Robótica: Manipuladores y Robots Móviles	Marcombo	978-8-426-71313-1	2005	Chapters 2 and 7-12			
B. Siciliano, L. Scavicco, L. Villani, G. Oriolo	Robotics: Modelling, Planning and Control	Springer	978-1-84628-641-4	2009	Chapters 5 and 11-12			
F. Fahimi	Autonomous Robots: Modeling, Path Planning, and Control	Springer	978-0-387-09537-0	2009	Chapter 6			
F. Torres, J. Pomares, P. Gil, S.T. Puente, R. Aracil	Robots y Sistemas Sensoriales	Prentice Hall	84-205-3574-5	2002	Chapters 6-7, 11 and 14			
	http://journalfieldrobotics.org/Home.html							
	http://www.elsevier.com/wps/find/journaldescription.cws_home/505622/description							
S. Thrun, W. Burghard, D. Fox	Probabilistic Robotics	The MIT Press	978-0-262-20162-9	2005	Chapters 2 and 7-12			
R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza	Introduction to Autonomous Mobile Robots, Second Edition	The MIT Press	978-0-262-01535-6	2011				