

UNIVERSIDAD DE CASTILLA - LA MANCHA GUÍA DOCENTE

1. DATOS GENERALES

Asignatura: CÁLCULO II Código: 56306
Tipología: BáSICA Créditos ECTS: 6

Grado: 360 - GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y
AUTOMÁTICA (TO)

Curso académico: 2019-20

Centro: 303 - E.ING. INDUSTRIAL Y AEROESPACIAL TOLEDO Grupo(s): 40 41 42

Curso: 1 Duración: C2
Lengua principal de Español Segunda lengua:

impartición: Español
Uso docente de

otras lenguas:

Página web:

Bilingüe: N

Profesor: MARIA FUENS	ANTA ANDRES ABELLAN -	Grupo(s): 40 41	42						
Edificio/Despacho	Departamento	Teléfono	Correo electrónico	Horario de tutoría					
Edificio Sabatini / 1.48	MATEMÁTICAS	926051536	fuensanta.andres@uclm.es	Disponible en https://intranet.eii-to.uclm.es/tutorias					
Profesor: DAMIAN CAST	TAÑO TORRIJOS - Grupo(s): 4	0 42							
Edificio/Despacho	Departamento	Teléfono	Correo electrónico	Horario de tutoría					
Edificio Sabatini / 1.53	MATEMÁTICAS	926051463	Damian.Castano@uclm.es	Disponible en https://intranet.eii-to.uclm.es/tutorias					
Profesor: JESUS ROSAI	OO LINARES - Grupo(s): 42								
Edificio/Despacho	Departamento	Teléfono	Correo electrónico	Horario de tutoría					
Edificio Sabatini / 1.53	MATEMÁTICAS	926051603	Jesus.Rosado@uclm.es	Disponible en https://intranet.eii-to.uclm.es/tutorias					
Profesor: DAVID RUIZ GRACIA - Grupo(s): 41 42									
Edificio/Despacho	Departamento	Teléfono	Correo electrónico	Horario de tutoría					
Edificio Sabatini / 1.53	MATEMÁTICAS	926051469	David.Ruiz@uclm.es	Disponible en https://intranet.eii-to.uclm.es/tutorias					

2. REQUISITOS PREVIOS

B01

La programación de esta asignatura parte del supuesto de que el estudiante que la va a seguir tiene adquiridos con suficiente nivel los conocimientos teóricos, prácticos y de técnicas, del cálculo diferencial e integral de una variable y del álgebra lineal, desarrollados en las asignaturas de Cálculo I y Álgebra del primer semestre. A los alumnos que accedan sin estos conocimientos previos, el seguimiento de la asignatura les resultará mucho mas costoso y difícil tanto en tiempo como en esfuerzo.

3. JUSTIFICACIÓN EN EL PLAN DE ESTUDIOS, RELACIÓN CON OTRAS ASIGNATURAS Y CON LA PROFESIÓN

El Cálculo II forma parte de las asignaturas que integran el módulo de Matemáticas para la titulación del grado de Ingeniería. Estas asignaturas son básicas para la formación científica y técnica del estudiante al fomentar el desarrollo de sus capacidades de abstracción y de rigor científico, así como las de análisis y síntesis.

El cálculo diferencial de varias variables permite el análisis de la optimización de funciones y la adquisición de técnicas cuantitativas esenciales para la asignación de recursos, toma de decisiones, y gestión en diversos problemas que al futuro ingeniero se le podrán plantear a lo largo de su vida profesional. Con el aporte del cálculo integral, se ayudará no sólo a la resolución de múltiples problemas del mundo de la ciencia y de la ingeniería, si no también a una mejor comprensión de los conocimientos y técnicas instrumentales y analíticas que se puedan utilizar en ellos.

La asignatura en su conjunto permitirá entender con mas profundidad otras asignaturas estudiadas anteriormente (Cálculo I, Álgebra, Física, ...) y facilitará el estudio de otras nuevas tanto básicas como específicas.

4. COMPETEN	ICIAS DE LA TITULACIÓN QUE LA ASIGNATURA CONTRIBUYE A ALCANZAR
Competencias	propias de la asignatura
Código	Descripción
A01	Poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia del campo de estudio.
A02	Saber aplicar los conocimientos al trabajo o vocación de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro del área de estudio.
A03	Tener capacidad de reunir e interpretar datos relevantes (normalmente dentro del área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
A07	Conocimientos de las Tecnologías de la Información y la Comunicación (TIC).
A08	Una correcta comunicación oral y escrita.
A12	Conocimiento en materias básicas y tecnológicas, que capacite para el aprendizaje de nuevos métodos y teorías, y dote de versatilidad para adaptarse a nuevas situaciones.
A13	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en la Ingeniería Electrónica Industrial y Automática.
A17	Capacidad para aplicar los principios y métodos de la calidad.

derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.

Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en

5. OBJETIVOS O RESULTADOS DE APRENDIZAJE ESPERADOS

Resultados de aprendizaje propios de la asignatura

Descripción

Conocer el manejo de las funciones de una y varias variables incluyendo su derivación, integración y representación gráfica.

Manejar adecuadamente y conocer los conceptos de la geometría diferencial.

Ser capaz de expresarse correctamente de forma oral y escrita y, en particular, saber utilizar el lenguaje de las Matemáticas como la forma de expresar con precisión las cantidades y operaciones que aparecen en ingeniería industrial. Habituarse al trabajo en equipo y comportarse respetuosamente.

Conocer los fundamentos y aplicaciones de la Optimización.

Resultados adicionales

Utilizar, a nivel de usuario, algún paquete de software de cálculo matemático y de visualización de gráficos de funciones, para realizar I cálculos numéricos y simbólicos pertinentes.

6. TEMARIO

Tema 1: Funciones de varias variables. Límites y continuidad

Tema 2: Cálculo Diferencial. Tema 3: Optimización Tema 4: Cálculo Integral.

Tema 4.1 Integrales dobles y triples

Tema 4.2 Aplicaciones al cálculo de áreas y volúmenes.

Tema 5: Integrales sobre curvas y superficies.

Tema 5.1 Integrales de línea.Tema 5.2 Integrales de superficie.

Tema 6: Cálculo vectorial.

Tema 7: Introducción a las ecuaciones en derivadas parciales.

7. ACTIVIDADES O BLOQUES DE	ACTIVIDAD Y METODOLOGÍA	,						
Actividad formativa	Metodología	Competencias relacionadas (para títulos anteriores a RD 822/2021)	ECTS	Horas	Ev	OI	b Rec	Descripción
Enseñanza presencial (Teoría) [PRESENCIAL]	Método expositivo/Lección magistral	A01 A08 A12 B01	1	25	N			El profesor explicará aquellos aspectos del desarrollo teórico de cada tema que estime necesarios para que el alumno pueda trabajar posteriormente de forma autónoma. Además presentará ejemplos prácticos.
Enseñanza presencial (Prácticas) [PRESENCIAL]	Resolución de ejercicios y problemas	A02 A07 A08 A13 A17 B01	0.6	15	N			Clases de problemas en el aula. El profesor, tras resolver algunos problemas tipo, se dedicará a resolver aquellos problemas de la colección de propuestos que los alumnos le pregunten.
Prácticas en aulas de ordenadores [PRESENCIAL]	Resolución de ejercicios y problemas	A02 A07 A08 A13 A17 B01	0.48	12	S	1	N S	Se realizarán talleres de resolución de problemas en el aula de ordenadores utilizando el programa MATLAB
Tutorías individuales [PRESENCIAL]	Trabajo dirigido o tutorizado	A02 A08	0.08	2	N		-	Para aclaración de dudas relacionadas con cualquiera de las actividades realizadas en la asignatura
Estudio o preparación de pruebas [AUTÓNOMA]	Trabajo autónomo	A01 A02 A03 A12 A13 B01	3.6	90	N			El alumno debe trabajar de forma autónoma en la preparación de las pruebas de progreso y la prueba final. Deberá estudiar todos los conceptos teóricos y aplicarlos a la resolución de los problemas propuestos de cada tema, sin descuidar el uso de MATLAB para ello. Las dudas que pudieran surgir deberán resolverse, bien en las clases de problemas, bien acudiendo a las tutorías.
Pruebas de progreso [PRESENCIAL]	Pruebas de evaluación	A01 A02 A03 A07 A08 A12 A13 A17 B01	0.12	3	S	1	N S	Se realizarán pequeñas pruebas de seguimiento a los alumnos fuera del horario habitual de clase. Consistirán en la resolución por parte del alumno de problemas y/o cuestionarios que serán evaluados. El objetivo es fomentar el trabajo continuado. La última de las pruebas se realizará en el laboratorio

Prueba fin	al [PRESENCIAL]	Pruehas de evaluación	A01 A02 A03 A07 A08 A12 A13 A17 B01	0.12	3	s	S	utilizando el programa Matlab Se realizara un examen final de S carácter teórico / práctico de la asignatura.
			Total:	6	150			
	Créditos totales de trabajo presencial: 2.4			Horas totales de trabajo presencial: 60				
	Créditos totales de trabajo autónomo: 3.6			Horas totales de trabajo autónomo: 90				

Ev: Actividad formativa evaluable

Ob: Actividad formativa de superación obligatoria

Rec: Actividad formativa recuperable

8. CRITERIOS DE EVALUACIÓN Y VALORACIONES			
	Valora	ciones	
Sistema de evaluación	Estudiante presencial	Estud. semipres.	Descripción
Pruebas de progreso	30.00%	0.00%	El 20 % corresponderá a la nota media obtenida en las pruebas de progreso y el 10% restante será la nota obtenida en la última prueba práctica utilizando MATLAB
Prueba final	70.00%	10 00%	Examen final de teoría y problemas de la asignatura que supondrá el 70% de la nota final.
Total:	100.00%	0.00%	

Criterios de evaluación de la convocatoria ordinaria:

Los criterios de evaluación en la convocatoria ordinaria constituyen:

- 20% para las pruebas de progreso (PP)
- 10% para la prueba práctica con Matlab (PM)
- 70% para el examen final de teoría y problemas (PF)

El examen final sirve a su vez como examen de recuperación de las pruebas de progreso. Para el cálculo de la nota final de la asignatura (NF) se utilizará la siguiente fórmula:

NF=máx(0.1*PM+0.2*PP+0.7*PF, 0.1*PM+0.9*PF)

Particularidades de la convocatoria extraordinaria:

Se realizará una prueba global (PE) con los contenidos teórico-prácticos (PETP) y de prácticas de ordenador (PEM) desarrollados a lo largo del curso. La nota se calculará en base a la fórmula PE=0.9*PETP+0.1*PEM.

Los alumnos que en la convocatoria ordinaria hayan obtenido más de un 5 sobre 10 en las pruebas de progreso (PP) y (PM) podrán conservar esta nota. La nota se calculará del siguiente modo:

 $PE=m\acute{a}x(0.9*PETP, 0.7*PETP+0.2*PP) + 0.1*m\acute{a}x(PEM, PM)$

Particularidades de la convocatoria especial de finalización:

Se realizará una prueba global elaborada sobre los contenidos teórico-prácticos y de prácticas de ordenador desarrollados a lo largo del curso. La valoración correspondiente de esta prueba será del 100%.

9. SECUENCIA DE TRABAJO, CALENDARIO, HITOS IMPORTANTES E INVERSIÓN TEMPORAL No asignables a temas Horas Suma horas

10. BIBLIOGRAFÍA, RECURS	OS				
Autor/es	Título/Enlace Web	Editorial	Población ISBN	Año	Descripción
APOSTOL, T	Calculus	Reverté	Barcelona	1995	
ARANDA, E.; PEDREGAL, P.	Problemas de Cálculo Vectorial.	Lulu.com		2004	
BURGOS, J.	Cálculo Infinitesimal de Varias Variables.	McGraw-Hill			
DEMIDOVICH	5000 Problemas de Análisis Matemático.	Paraninfo			
GARCIA, A.; LOPEZ, A.; de la VILLA, A.	Cálculo II.	CLAGSA	Madrid	2002	
GRANERO	Cálculo Infinitesimal.	McGraw-Hill	Madrid		
LARSON, R.; HOSTETLE, R.; EDWARDS, B.	Cálculo y Geometría Analítica.	McGraw-Hill	Madrid		
PERAL ALONSO, I.	Primer curso de ecuaciones en derivadas parciales.	Addison-Wesle Universidad autónoma de Madrid	y /		
ROGAWSKI, J.	Cálculo: Varias Variables	Reverté		2012	
SALAS, S.; HILLE, E.	Calculus	Reverté			
STEWART, J.	Cálculo Multivariable.	Thomson			
ZILL, D.	Ecuaciones diferenciales con aplicaciones de modelado.	Thomson			
FLEMING, W:	Functions of several variables	Springer-Verlag	9		