

UNIVERSIDAD DE CASTILLA - LA MANCHA GUÍA DOCENTE

Asignatura: QUÍMICA ORGÁNICA

Tipología: BáSICA Grado: 344 - GRADO EN INGENIERÍA QUÍMICA

Centro: 1 - FTAD. CC. Y TECNOLOGIAS QUIMICAS CR.

Curso: 2

otras lenguas: Página web:

Lengua principal de impartición: Español Uso docente de

Bilingüe: N

English Friendly: N

Créditos ECTS: 6

Curso académico: 2019-20

Grupo(s): 21

Duración: C2

Segunda lengua: Inglés

Código: 57714

Profesor: SONIA MERINO GUIJARRO - Grupo(s): 21									
Edificio/Despacho	Departamento	Teléfono	Correo electrónico	Horario de tutoría					
San Alberto Magno, 1ª planta	QUÍMICA INORG., ORG., Y BIOQ.	3495	sonia.merino@uclm.es	Monday: 16.30-19.30 Wednesday: 16.30-19.30					
Profesor: JULIAN RODRIGI	JEZ LOPEZ - Grupo(s): 21								
Edificio/Despacho	Departamento	Teléfono	Correo electrónico	Horario de tutoría					
San Alberto Magno, 1ª planta	QUÍMICA INORG., ORG., Y BIOQ.	3462	julian.rodriguez@uclm.es	Lunes: 16.30-19.30Martes: 16.30-19.30					

2. REQUISITOS PREVIOS

No tiene.

3. JUSTIFICACIÓN EN EL PLAN DE ESTUDIOS, RELACIÓN CON OTRAS ASIGNATURAS Y CON LA PROFESIÓN

La Ingeniería Química es un área abierta, que con base en las ciencias básicas, Matemáticas, Física y Química, se encuentra en constante evolución, con fronteras lábiles y que interacciona, complementa, se solapa y es solapada por ingenierías tradicionales y por otras de más reciente aparición.

La asignatura está englobada dentro del módulo de formación básica. Teniendo en cuenta el contexto de los estudios de esta asignatura (grado de Ingeniero Químico) se prestará especial atención en resaltar el aspecto práctico de la Química Orgánica, de manera que se genere en los estudiantes la capacidad de valorar la importancia de la química orgánica tanto en los diferentes aspectos de la vida cotidiana como en la industria guímica orgánica. Les permitirá conocer los principales ámbitos de aplicación de la Química Orgánica así como las características de la Industria Química Orgánica. Además se pretende que el alumno adquiera una conciencia de protección del medio ambiente desarrollando la idea de que la Química Orgánica debe utilizarse para mejorar la calidad de vida.

Su formación en esta asignatura resulta de especial relevancia, por ejemplo, en los procesos de la industria petroquímica, polímeros, alimentación, farmacéutica, agroquímica, nuevos materiales, etc, así como iniciarse en la investigación científica.

4. COMPETENCIAS DE LA TITULACIÓN QUE LA ASIGNATURA CONTRIBUYE A ALCANZAR

Competencias propias de la asignatura

Código Descripción

Capacidad para comprender y aplicar los principios de conocimientos básicos de la química general, química orgánica e inorgánica y E04

sus aplicaciones en la ingeniería.

Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de G03

versatilidad para adaptarse a nuevas situaciones. Capacidad de análisis y resolución de problemas Capacidad de aprendizaie y trabajo de forma autónoma

5. OBJETIVOS O RESULTADOS DE APRENDIZAJE ESPERADOS

Resultados de aprendizaje propios de la asignatura

Descripción

G20

G21

Saber aplicar los conocimientos de Química Orgánica a la solución de problemas sintéticos y estructurales.

Desarrollar su capacidad de trabajar en equipo.

Suscitar y fomentar en el alumno todos aquellos valores y actitudes inherentes a la actividad científica y empresarial.

Comprender la importancia de los productos orgánicos en la industria química y en la vida cotidiana.

Conocer los diferentes tipos de compuestos orgánicos, sus propiedades físico-químicas, reactividad y principales métodos de síntesis.

Conocer los mecanismos de las principales reacciones orgánicas.

Conocer los principales ámbitos de aplicación de la Química Orgánica así como las características de la Industria Química Orgánica

Conocer los aspectos principales de la terminología y nomenclatura en Química Orgánica.

Conseguir que el alumno sea capaz de buscar y seleccionar información en el ámbito de la Química Orgánica y que sea capaz de procesarla y presentarla adecuadamente tanto de forma oral como escrita, desarrollando su capacidad de síntesis, siendo crítico y objetivo.

Desarrollar en el alumno la capacidad de iniciativa para plantear y resolver problemas concretos de Química Orgánica, así como de interpretar los resultados obtenidos.

Aprender a elaborar temas y adquirir destreza en la exposición oral y escrita a la hora de la exposición de resultados.

Adquirir una conciencia de protección del medio ambiente desarrollando la idea de que la Química Orgánica debe utilizarse para mejorar la calidad de vida. Conocer la estereoquímica de los compuestos orgánicos y la estereoselectividad de las principales reacciones.

Conocer la estructura de los principales grupos funcionales orgánicos.

6. TEMARIO

Tema 1: REPRESENTACIÓN Y NOMENCLATURA DE MOLÉCULAS ORGÁNICAS. Concepto e historia. Características y fuentes de los compuestos orgánicos. Fórmula empírica y fórmula molecular. Fórmulas estructurales. Teoría estructural de Kekulé. Isomería. Clasificación de los compuestos orgánicos. Concepto de grupo funcional. Series químicas y series homólogas. Hidrocarburos. Clasificación. Nomenclatura y formulación en química orgánica.

Tema 2: ESTRUCTURA ELECTRÓNICA DE LOS COMPUESTOS ORGÁNICOS. El enlace covalente en química orgánica. Teoría de los electrones de valencia. Teoría de orbitales moleculares. Estructura electrónica del átomo de carbono. El enlace en el metano: hibridación sp3. El enlace en el etileno: hibridación sp2.El enlace en el acetileno: hibridación sp. Polaridad de los enlaces. Efectos electrónicos. Efecto inductivo (I). Efecto conjugativo (K). Resonancia. Conjugación. Aromaticidad. Benceno. La regla de Hückel. Otros tipos de enlace en compuestos orgánicos. Influencia de la estructura sobre las propiedades moleculares.

Tema 3: ISOMERÍA Y ESTEREOISOMERÍA. ANÁLISIS CONFORMACIONAL. Concepto y clasificación. Isomería constitucional. Isomería de esqueleto o de ramificación en cadena. Isomería de posición. Isomería de función. Estereoisomería. Concepto de conformación. Análisis conformacional. Análisis conformacional del etano. Conformaciones en otros alcanos. Concepto de confórmelo. Concepto de configuración. Análisis conformacional de cicloalcanos. Cicloperopano. Ciclopertano. Ciclopertano. Ciclohexanos monosustituidos. Ciclohexanos disustituidos.

Tema 4: ESTEREOQUÍMICA. Introducción. Actividad óptica. Polarímetro. Causas de la actividad óptica. Quiralidad. Configuración relativa y absoluta. Reglas de Cahn, Ingold y Prelog. Reglas mnemotécnicas. Racémico. Moléculas con dos centros estereogénicos. Moléculas con dos carbonos asimétricos diferentes. Moléculas con dos carbonos asimétricos iguales. Importancia vital de la estereoquímica.

Tema 5: ACIDEZ Y BASICIDAD EN LOS COMPUESTOS ORGÁNICOS. Concepto de Lowry-Brönsted. Constantes de acidez y basicidad. Valores de pKa y pKb. Concepto de Lewis. Efectos de la estructura en la fuerza de ácidos y bases. Electronegatividad. Tamaño. Energías de enlace. Efectos inductivos. Efectos de resonancia. Hibridación. Predicción de interacciones ácido-base usando los valores de pKa.

Tema 6: LAS REACCIONES ORGÁNICAS. Tipos de reacciones orgánicas. Mecanismos de reacción. Perfil energético de una reacción. Energía de activación. Procesos homolíticos y heterolíticos. Nucleófilos y electrófilos. Intermedios de reacción. Radicales libres. Carbocationes. Carbaniones.

Tema 7: REACCIONES DE SUSTITUCIÓN NUCLEÓFILA Y ELIMINACIÓN. Reacciones de Sustitución Nucleófila. Sustitución Nucleófila Bimolecular (SN2). Factores que afectan la velocidad de las reacciones SN2. El substrato al que está unido el grupo saliente. El nucleófilo. El disolvente. El grupo saliente. Reacciones de SN2 en sistemas cíclicos. Sustitución Nucleófila Unimolecular (SN1). Factores que afectan la velocidad de las reacciones SN1. Competencia entre las rutas SN1 y SN2. Reacciones de Sustitución Nucleófila. Halógeno como nucleófilo. Haluros de alquilo. Oxígeno y azufre como nucleófilo. Éteres, esteres, tioeteres, y epóxidos. Nitrógeno como nucleófilo. Aminas y sales de amonio. Carbono como nucleófilo. Nitrilos, reactivos organometálicos, y acetiluros. Hidruro como nucleófilo. Reacciones de reducción. Formación de compuestos cíclicos. Reacciones Competitivas: Eliminación. Eliminación bimolecular E2. Eliminación unimolecular E1. Competencia entre las rutas E2 y E1. Competencia Eliminación.

Tema 8: REACCIONES DE ADICIÓN NUCLEÓFILA A GRUPOS CARBONILO. Adición nucleófila a grupos carbonilo: aldehídos y cetonas. Reactividad de aldehídos y cetonas. Nucleófilos y grupos saliente: reacciones de adición reversibles. Oxígeno como nucleófilo: hemiacetales, hemicetales, acetales y cetales. Agua como nucleófilo: hidratos. Hidruro como nucleófilo: reducción de aldehídos y cetonas. Carbono como nucleófilo. Cianuro: cianohidrínas. Compuestos organometálicos: reactivos de Grignard y acetiluros. Nitrógeno como nucleófilo. Iminas. Enaminas. Sustitución nucleófila en grupos carbonilo de derivados de ácido carboxílico. Oxígeno como nucleófilo en reacciones de sustitución. Formación de ésteres. Hidrólisis de derivados de ácido. Nitrógeno como nucleófilo en reacciones de sustitución: amidas. Hidruro como nucleófilo: reacciones de reducción. Carbono como nucleófilo: reactivos de Grignard. Formación de enoles. Reactividad de enolatos. Halogenación. Reacciones de alquilación. Reacción aldólica. Condensación aldólica. Enolatos de derivados de ácido. Reacción de Claisen.

Tema 9: REACCIONES DE ADICIÓN A ENLACES MÚLTIPLE C-C. Reacciones de adición a enlaces múltiple C-C. Reacciones de adición electrófila sobre enlace dobles C=C. Adiciones electrófilas de haluros de hidrógeno. Adición de ácido sulfúrico y agua. Adición de halógenos. Formación de halohidrinas. Hidroboración. Reactivos electrófilos de oxígeno. Reacciones de adición electrófilas sobre enlaces triples C¿C. Reacciones de adición electrófilas sobre dienos. Reacciones de adición nucleófilas sobre enlaces doble C=C. Reacciones de adición de radicales sobre enlaces múltiple C-C. Reacciones de adición de radicales sobre alquenos. Reacciones de adición de hidrógeno. Dimerización, oligomerización y polimerización de alquenos. Polimerizaciones radicálicas. Polimerizaciones catiónicas. Polimerizaciones catiónicas. Polimerizaciones catiónicas.

Tema 10: REACCIONES DE SUSTITUCIÓN ELECTRÓFILA AROMÁTICA. Sustitución electrófila aromática (SEAr). Reacciones de sustitución electrófila aromática sobre benceno. Mecanismo de la reacción de sustitución electrófila aromática. Nitración. Sulfonación. Halogenación. Alquilación de Friedel-Crafts. Acilación de Friedel-Crafts. Influencia de los sustituyentes del anillo en la SEAr. Reactividad. Orientación . Entrada de sucesivos sustituyentes. Estrategias para la síntesis de bencenos sustituidos. Reacciones de la cadena lateral Oxidación. Halogenación.

Actividad formativa	Metodología	Competencias relacionadas (para títulos anteriores a RD 822/2021)		Horas	Ev	Ob	Red	: Descripción
Enseñanza presencial (Teoría) [PRESENCIAL]	Método expositivo/Lección magistral	E04 G03	0.8	20	N	-		-
Talleres o seminarios [PRESENCIAL]	Aprendizaje basado en problemas (ABP)	E04 G20	1.36	34	N	-		-
Pruebas de progreso [PRESENCIAL]	Pruebas de evaluación	G20	0.16	4	s	N	5	3
Estudio o preparación de pruebas		G21	3.6	90	N	-		-

Prueba ina/[PRESENCIAL]		G20	0.08	2	S	S	S	
		Total:	6	150				
	Créditos totale:	s de trabajo presencial: 2.4				Но	ras	totales de trabajo presencial: 60
	Créditos totale	es de trabajo autónomo: 3.6				Н	oras	s totales de trabajo autónomo: 90

Ev: Actividad formativa evaluable

Ob: Actividad formativa de superación obligatoria

Rec: Actividad formativa recuperable

8. CRITERIOS DE EVALUACIÓN Y VALORACIONES								
	Valoraciones							
Sistema de evaluación	Estudiante presencial	Estud. semipres.	Descripción					
Pruebas de progreso	0.00%	10 00%	Para aprobar la asignatura con evaluación continua es necesario superar los dos exámenes parciales					
Prueba final	100.00%	0.00%	El alumno que tenga alguna de las dos pruebas parciales suspensas, o ambas, deberá superar la prueba final para aprobar la asignatura.					
Total:	100.00%	0.00%						

Criterios de evaluación de la convocatoria ordinaria:

En la modalidad de evaluación continua se exigirá superar los dos exámenes parciales con una nota mínima de 5 sobre 10.

En la convocatoria ordinaria se exigirá un mínimo de 5 sobre 10 en un único examen final.

Particularidades de la convocatoria extraordinaria:

En la convocatoria extraordinaria se exigirá un mínimo de 5 sobre 10 en un único examen final.

9. SECUENCIA DE TRABAJO, CALENDARIO, HITOS IMPORTANTES E INVERSIÓN TEMPORAL

No asignables a temas

foras Suma horas

Comentarios generales sobre la planificación: En el primer examen parcial se evaluarán los 6 0 7 primeros temas. En el segundo examen parcial se evaluarán los 10 temas de la asignatura.

10. BIBLIOGRAFÍA, RECUR	SOS				
Autor/es	Título/Enlace Web	Editorial	Población ISBN	Año	Descripción
Bruice, Paula Yurkanis	Química orgánica	Pearson Educación	978-970-26-0791-5	2008	
Carey, Francis A.	Química orgánica /	McGraw Hill,	978-607-15-1210-9	2014	
Clayden, Jonathan	Organic chemistry /	Oxford University Press,	978-0-19-927029-3	2012	
Ege, Seyhan	Química orgánica: estructura y reactividad	Reverté	84-291-7064-2	2004	
McMurry, John	Organic chemistry: with biological applications	Brooks/Cole	9780495391449	2011	
Meislich, Estelle K.	3000 solved problems in organic chemistry	McGraw-Hill	0-07-056424-8	1994	
Morrison, Robert Thornton	Química orgánica	Addison-Wesley Iberoamericana	0-201-62932-1	1990	
Quiñoá Cabana, Emilio	Cuestiones y ejercicios de química orgánica : una guía de es	McGraw-Hill,	84-481-4015-X	2004	
Quiñoá Cabana, Emilio	Nomenclatura y representación de los compuestos orgánicos :	McGraw-Hill,	978-84-481-4363-3	2010	
Solomons, T. W. Graham	Organic chemistry	John Wiley	978-0-471-68496-1	2008	
Soto Cámara, José Luis	Química orgánica	Síntesis	84-7738-399-5	2003	
Streitwieser, Andrew	Química orgánica	Interamericana	84-7605-353-3	1989	
Vollhardt, K. Peter C.	Química orgánica: estructura y función	Omega	978-84-282-1431-5	2008	
Wade, L. G.Jr.	Química orgánica	Pearson/Prentice Hall	84-205-4102-8	2004	