

# UNIVERSIDAD DE CASTILLA - LA MANCHA **GUÍA DOCENTE**

### 1. General information

Course: MATERIALS SCIENCE

Type: CORE COURSE

Degree: 354 - UNDERGRADUATE DEGREE PROGRAMME IN ELECTRICAL ENGINEERING (ALM)
Center: 106 - SCHOOL OF MINING AND INDUSTRIAL ENGINEERING

Year: 2 Main language: Spanish Use of additional languages:

ECTS credits: 6 Academic year: 2023-24 Group(s): 55 Duration: First semi nd language: English English Friendly: Y

| Lecturer: Mª TERESA CUBERES MONTSERRAT - Group(s): 55 |                                |                                 |                        |                                                    |  |  |  |  |
|-------------------------------------------------------|--------------------------------|---------------------------------|------------------------|----------------------------------------------------|--|--|--|--|
| Building/Office                                       | Department                     | Phone number Email Office hours |                        | Office hours                                       |  |  |  |  |
| 2.04, Edificio Elhuyar                                | MECÁNICA ADA. E ING. PROYECTOS | 926052849                       | teresa.cuberes@uclm.es | To be published in the moodle space of the subject |  |  |  |  |

In order to take this subject to the maximum advantage, it is recommended that the student has achieved competences related to the application of the basic principles of general chemistry, mastery of the basic concepts of the general laws of physics and the resoluti

### 3. Justification in the curriculum, relation to other subjects and to the profession

This course enables students to acquire knowledge of the fundamentals of materials science, technology and chemistry by understanding the relationship between their microstructure, synthesis or processing and their properties.

| 4. Degree competence | es achieved in this course                                                                                                                                                                                                                                      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course competences   |                                                                                                                                                                                                                                                                 |
| Code                 | Description                                                                                                                                                                                                                                                     |
| A08                  | Appropriate level of oral and written communication.                                                                                                                                                                                                            |
| CB01                 | Prove that they have acquired and understood knowledge in a subject area that derives from general secondary education and is appropriate to a level based on advanced course books, and includes updated and cutting-edge aspects of their field of knowledge. |
| CB02                 | Apply their knowledge to their job or vocation in a professional manner and show that they have the competences to construct and justify arguments and solve problems within their subject area.                                                                |
| CB03                 | Be able to gather and process relevant information (usually within their subject area) to give opinions, including reflections on relevant social, scientific or ethical issues.                                                                                |
| CB04                 | Transmit information, ideas, problems and solutions for both specialist and non-specialist audiences.                                                                                                                                                           |
| CB05                 | Have developed the necessary learning abilities to carry on studying autonomously                                                                                                                                                                               |
| CEC03                | Knowledge of the fundamentals of science, technology and chemistry of materials. Understanding of the relation between the microstructure, synthesis, processing and properties of materials.                                                                   |
| CG03                 | Knowledge of basic materials and technologies that assist the learning of new methods and theories and enable versatility to adapt to new situations.                                                                                                           |
| CG04                 | Ability to take the initiative to solve problems, take decisions, creativity, critical reasoning and ability to communicate and transmit knowledge, skills and abilities in Electrical Engineering.                                                             |
| CG05                 | Knowledge to undertake measurements, calculations, evaluations, appraisals, studies, give expert opinions, reports, work plans and similar tasks.                                                                                                               |
| CG06                 | Ability to work to specifications and comply with obligatory rules and regulations.                                                                                                                                                                             |
| CT02                 |                                                                                                                                                                                                                                                                 |

### 5. Objectives or Learning Outcomes

## Course learning outcomes

The students will be able to differentiate the mechanical properties of materials, and perform mechanical tests

The students will get introduced to materials science and engineering
The students will be able to understand and select the most appropriate hardening mechanism

The students will be able to understand the structure of materials and the causes of their behaviour, relating it to their microstructure and equilibrium diagrams

The students will be able to understand the relationship between the microstructure of the material and its macroscopic properties (mechanical, optical, electrical, magnetic and chemical) The students will be able to identify the metal alloys, polymers, ceramics and compounds most commonly used in the industry and their applicability.

6. Units / Contents
Unit 1: Introduction to Material Science and Engineering.

Unit 2: Structure and imperfections.
Unit 3: Mechanical Properties and Microstructure. Microstructural Control.

Unit 4: Mechanical behaviour. Testing.

Unit 6: Electrical, magnetic, chemical, thermal and optical properties.

Unit 7: Engineering materials: metals, polymers, ceramics and composites.

| 7. Activities, Units/Modules and Methodology  |                                     |                                                                |                                      |       |    |     |                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------|-------------------------------------|----------------------------------------------------------------|--------------------------------------|-------|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Training Activity                             | Methodology                         | Related Competences (only degrees before RD 822/2021)          | ECTS                                 | Hours | As | Com | Description                                                                                                                                                                                                                                                                                                |
| Class Attendance (theory) [ON-SITE]           | Combination of methods              | A08 CB01 CB02 CB03 CB04 CB05 CEC03<br>CG03 CG04 CG05 CG06 CT02 | 1.36                                 | 34    | N  |     | The Professor will focus the topic and explain the fundamental contents, using blackboard, audiovisual media and chair experiences.                                                                                                                                                                        |
| Class Attendance (practical) [ON-SITE]        | Combination of methods              | A08 CB01 CB02 CB03 CB04 CB05 CEC03<br>CG03 CG04 CG05 CG06 CT02 | 0.6                                  | 15    | Υ  | Υ   | Development of Laboratory Practicals in small groups.                                                                                                                                                                                                                                                      |
| Problem solving and/or case studies [ON-SITE] |                                     | A08 CB01 CB02 CB03 CB04 CB05 CEC03<br>CG03 CG04 CG05 CG06 CT02 | 0.2                                  | 5     | Υ  | ľ   | Lists of problems -provided to the students in advanced - will<br>be discussed and resolved in the classroom (collective<br>learning). Case studies, or work of further developing<br>concepts, might also be included.                                                                                    |
| Formative Assessment [ON-SITE]                | Accecement tecto                    | A08 CB01 CB02 CB03 CB04 CB05 CEC03<br>CG03 CG04 CG05 CG06 CT02 | 0.24                                 | 6     | Υ  | Y   | There will be a final exam (non-continuous assessment) or<br>partial exams (continuous assessment) that together cover<br>the entire subject syllabus. Each exam will consist of two<br>different tests relating to (a) questions or short answer<br>questions and (b) exercises and application problems. |
| Study and Exam Preparation [OFF-SITE]         | Self-study                          | A08 CB01 CB02 CB03 CB04 CB05 CEC03<br>CG03 CG04 CG05 CG06 CT02 | 3.6                                  | 90    | N  | -   | The student will revise and study his/her classroom notes, completing them with the bibliography provided by the Professor. Also, he/she will work on the resolution of the lists of problems and case studies that will be discussed in the classroom.                                                    |
| Total:                                        |                                     |                                                                | 6                                    | 150   |    |     |                                                                                                                                                                                                                                                                                                            |
|                                               | Total credits of in-class work: 2.4 |                                                                |                                      |       |    |     |                                                                                                                                                                                                                                                                                                            |
| Total credits of out of class work: 3.6       |                                     |                                                                | Total hours of out of class work: 90 |       |    |     |                                                                                                                                                                                                                                                                                                            |

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

| 8. Evaluation criteria and Grading System         |                       |                            |                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------------------------------------------------|-----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Evaluation System                                 | Continuous assessment | Non-continuous evaluation* | Description                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Assessment of problem solving and/or case studies | 5.00%                 | 5.00%                      | The presentation of the provided lists of problems solved in full detail will be assessed.                                                                                                                                                                                                                                                                                     |  |  |  |
| Mid-term tests                                    | 70.00%                | 0.00%                      | It will be necessary to achive independently a 4/10 rating in both problem solving and conceptual issues.v                                                                                                                                                                                                                                                                     |  |  |  |
| Laboratory sessions                               | 25.00%                | 25.00%                     | The participation in the laboratory practicals, the questionnaires related to the practicals and/or the<br>practical reports submitted will be assessed, taking into account the explanation of the theory and<br>procedure of the same, the processing of the data obtained in the laboratory, the preparation of graphs<br>and figures, and the presentation of the results. |  |  |  |
| Final test                                        | 0.00%                 | 70.00%                     | It will be necessary to achive independently a 4/10 rating in both problem solving and conceptual issues.                                                                                                                                                                                                                                                                      |  |  |  |
| To                                                | tal: 100.00%          | 100.00%                    |                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

### Evaluation criteria for the final exam:

# Continuous assessment:

The laboratory practicals (25%), the resolution of problems or cases (5%), and the mid-term tests (70%) will be assessed. The assessment of the training activities passed by the student will be retained up to a maximum of two academic years after the current one.

The course will be assessed taking into account the laboratory practicals (25%), the resolution of problems or cases (5%) and the final exam (70%). The assessment of the training activities passed by the student will be retained for a maximum of two academic years.

Specifications for the resit/retake exam:
The evaluation will be based on the resit/retake exam. The evaluation of the training activities passed by the student will be retained for a maximum of two academic years.

Specifications for the second resit/retake exam. The evaluation of the training activities passed by the student will be retained for a maximum of two academic years.

The evaluation will be based on the second resit/retake exam. The evaluation of the training activities passed by the student will be retained for a maximum of two academic years.

| 9. Assignments, course calendar and important dates                      |                  |
|--------------------------------------------------------------------------|------------------|
| Not related to the syllabus/contents                                     |                  |
| Hours                                                                    | hours            |
| Class Attendance (theory) [PRESENCIAL][Combination of methods]           | 34               |
| Class Attendance (practical) [PRESENCIAL][Combination of methods]        | 15               |
| Problem solving and/or case studies [PRESENCIAL][Combination of methods] | 5                |
| Formative Assessment [PRESENCIAL][Assessment tests]                      | 6                |
| Study and Exam Preparation [AUTÓNOMA][Self-study]                        | 90               |
| Global activity                                                          |                  |
| Activities                                                               | hours            |
| Problem solving and/or case studies [PRESENCIAL][Combination of methods] | 5                |
| Formative Assessment [PRESENCIAL][Assessment tests]                      | 6                |
| Class Attendance (theory) [PRESENCIAL][Combination of methods]           | 34               |
| Study and Exam Preparation [AUTÓNOMA][Self-study]                        | 90               |
| Class Attendance (practical) [PRESENCIAL][Combination of methods]        | 15               |
|                                                                          | Total horas: 150 |

| 10. Bibliography and Sources                                               |                                                                                                 |                                       |           |                   |      |             |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------|-----------|-------------------|------|-------------|
| Author(s)                                                                  | Title/Link                                                                                      | Publishing house                      | Citv      | ISBN              | Year | Description |
| M. F. Ashby, D. R. H. Jones                                                | Materiales para ingeniería l: introducción a las<br>propiedades, las aplicaciones y el diseño   | Reverté                               | Barcelona | 9788429172553     | 2008 |             |
| W. F. Smith, J. Hashemi                                                    | Fundamentos de la ciencia e ingeniería de materiales.                                           | Ed. McGraw Hill (5ª edición)          |           | 9786071511522     | 2014 |             |
| Callister, William D.; Rethwisch, David G.                                 | Ciencia e Ingeniería de Materiales 2ed (correspondiente a la 9º edición original)               | Reverté                               |           | 9788429172515     | 2016 |             |
| D. R. Askeland.                                                            | Ciencia e ingeniería de los materiales.                                                         | Thomson Paraninfo                     | Madrid    | 9788497320160     | 2001 |             |
| J. F. Shackelford.                                                         | Introducción a la ciencia de materiales para ingenieros.                                        | Ed. Prentice Hall (7ª edición)        | Madrid    | 9788483226599     | 2010 |             |
| Juan Manuel Montes Martos, Francisco Gómez Cuevas y<br>Jesús Cintas Físico | Ciencia e Ingeniería de los Materiales                                                          | Ediciones Paraninfo                   |           | 9788428330176     | 2014 |             |
| M. F. Ashby, D. R. H. Jones                                                | Materiales para ingeniería II: introducción a la microestructura, el procesamiento y el diseño  | Reverté                               | Barcelona | 9788429172560     | 2009 |             |
| Wendelin Wright, Donald R. Askeland                                        | The Science and Engineering of Materials (7th Edition)                                          | CENGAGE Learning<br>Custom Publishing |           | 9781305076761     | 2015 |             |
| D.R.H. Jones Michael Ashby                                                 | Engineering Materials 1:An Introduction to Properties,<br>Applications and Design (4th Edition) | Butterworth-Heinemann                 |           | 9780080966663     | 2011 |             |
| James F. Shackelford                                                       | Introduction to Materials Science for Engineers (8th Edition)                                   | Pearson                               |           | 9780133826654     | 2015 |             |
| D.R.H. Jones, Michael Ashby                                                | Engineering Materials 2. An Introduction to<br>Microstructures and Processing (4th Edition)     | Butterworth-Heinemann                 |           | 9780080966694     | 2012 |             |
| W. F. Smith, J. Hashemi                                                    | Foundations of Materials Science and Engineering (5th Edition)                                  | Ed. McGraw Hill                       |           |                   | 2010 |             |
| William D. Callister Jr., David G. Rethwisch                               | Materials Science and Engineering: An Introduction (10th Edition)                               | Wiley                                 |           | 978-1-119-40549-8 | 2018 |             |