

UNIVERSIDAD DE CASTILLA - LA MANCHA GUÍA DOCENTE

1. General information

Course: MATERIALS SCIENCE Code: 56313 Type: CORE COURSE ECTS credits: 6

Degree: 352 - UNDERGRADUATE DEGREE PROGRAMME IN MECHANICAL ENGINEERING (AB) Academic year: 2023-24

Center: 605 - SCHOOL OF INDUSTRIAL ENGINEERS. AB Group(s): 11

Year: 2 **Duration:** First semester

Main language: Spanish Second language: Use of additional English Friendly: Y languages:

Bilingual: N Web site:

Lecturer: JESUS CANALES VAZQUEZ - Group(s): 11							
Building/Office Department		Phone nun	nber Email	Office hours			
Instituto Energías Renovables/0D1	MECÁNICA ADA. E ING. PROYECTOS	92605319	7 jesus.canales@uclm.es				
Lecturer: JUAN CARLOS PEREZ FLORES - Group(s): 11							
Building/Office	Department	Phone number	Email	Office hours			
Instituto Energías Renovables / 0D1	MECÁNICA ADA. E ING. PROYECTOS	926053325	JuanCarlos.PFlores@uclm.es				

2. Pre-Requisites

CB05

D07

Students are expected to demonstrate learning skills acquired during the previous academic course related to Mathematics, Physics and Chemistry

3. Justification in the curriculum, relation to other subjects and to the profession

Students will develop skills to determine the properties of materials and choose the most adequate material for a given industrial application.

Such skills will be the used in further subjects such as Materials Engineering and Technology, Fabrication Technologies, Technology of Composite Materials, Fabrication systems, etc, in the different industrial engineering degrees.

4. Degree competend	ces achieved in this course
Course competences	
Code	Description
A01	To understand and have knowledge in an area of study that moves on from the general education attained at secondary level and usually found at a level that, while supported in advanced text books, also includes some aspects that include knowledge found at the cutting edge of the field of study.
A02	To know how to apply knowledge to work or vocation in a professional manner and possess the competences that are usually demonstrated by the formulation and defence of arguments and the resolution of problems in the field of study.
A03	To have the capability to gather and interpret relevant data (normally within the area of study) to make judgements that include a reflection on themes of a social, scientific or ethical nature.
A04	To be able to transmit information, ideas, problems and solutions to a specialized audience.
A05	To have developed the learning skills necessary to undertake subsequent studies with a greater degree of autonomy.
A08	Appropriate level of oral and written communication.
A12	Knowledge of basic materials and technologies that assist the learning of new methods and theories and enable versatility to adapt to new situations.
A13	Ability to take the initiative to solve problems, take decisions, creativity, critical reasoning and ability to communicate and transmit knowledge, skills and abilities in Mechanical Engineering.
A14	Knowledge to undertake measurements, calculations, evaluations, appraisals, studies, give expert opinions, reports, work plans and similar tasks.
A15	Ability to work to specifications and comply with obligatory rules and regulations.
C03	Knowledge of the fundamentals of science, technology and chemistry of materials. Understanding of the relation between the microstructure, synthesis, processing and properties of materials.
CB01	Prove that they have acquired and understood knowledge in a subject area that derives from general secondary education and is appropriate to a level based on advanced course books, and includes updated and cutting-edge aspects of their field of knowledge.
CB02	Apply their knowledge to their job or vocation in a professional manner and show that they have the competences to construct and justify arguments and solve problems within their subject area.
CB03	Be able to gather and process relevant information (usually within their subject area) to give opinions, including reflections on relevant social, scientific or ethical issues.
CB04	Transmit information, ideas, problems and solutions for both specialist and non-specialist audiences.

Have developed the necessary learning abilities to carry on studying autonomously

Knowledge and ability in the application of materials engineering.

5. Objectives or Learning Outcomes

Course learning outcomes

Description

Additional outcomes

6. Units / Contents

Unit 1: Introduction to Materials Science

Unit 2: Structure of Materials

Unit 3: Crystal Nucleation & Growth

Unit 4: Mechanical Properties

Unit 5: Work-Hardening

Unit 6: Metal Alloys

Unit 7: Ceramic Materials

7. Activities, Units/Modules and	/othodology							
Training Activity	Related Competences		ECTS	Hours	lours As		Description	
Class Attendance (theory) [ON-SITE]	Combination of methods	A01 A03 A04 A05 A12 C03	1.36	34	N	-		
Problem solving and/or case studies [ON-SITE]	Combination of methods	A02 A03 C03	0.2	5	Υ	Υ		
Laboratory practice or sessions [ON-SITE]	Combination of methods	A03 A13 A14 A15 C03	0.6	15	Υ	Υ		
Study and Exam Preparation [OFF-SITE]	Self-study	A02 A03 A04 A05 A06 A08	3.6	90	N	-		
Formative Assessment [ON-SITE]	Assessment tests	A01 A02 A03 A04 A05 A12 A13 A14 A15 C03	0.24	6	Υ	Υ		
Total:								
Total credits of in-class work: 2.4							Total class time hours: 60	
Total credits of out of class work: 3.6				Total hours of out of class work: 90				

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System						
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description			
Final test	70.00%	70.00%				
Laboratory sessions	15.00%	15.00%				
Assessment of problem solving and/or case studies	5.00%	5.00%				
Theoretical papers assessment	10.00%	10.00%				
Total	100.00%	100.00%				

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

Evaluation criteria for the final exam:

Continuous assessment:

Marks in the exam must be equal or above 4.0 to calculate the average. Marks below 4.0 shall imply final qualifications below 4.0. Students failing in either the continuous evaluation activities or lab work must add the corresponding fraction of the final qualification to the final exam/test

Non-continuous evaluation:

Marks in the exam must be equal or above 4.0 to calculate the average. Marks below 4.0 shall imply final qualifications below 4.0. The marks of students failing lab work (exam) will depend exclusively on the final exam/test

Specifications for the resit/retake exam:

Marks corresponding to continuous evaluation mode and/or lab work will be kept for the entire academic year.

Specifications for the second resit / retake exam:

Same conditions for resit/retake exam apply

9. Assignments, course calendar and important dates						
Not related to the syllabus/contents						
Hours	hours					
Class Attendance (theory) [PRESENCIAL][Combination of methods]	34					
Problem solving and/or case studies [PRESENCIAL][Combination of methods]	5					
Laboratory practice or sessions [PRESENCIAL][Combination of methods]	15					
Study and Exam Preparation [AUTÓNOMA][Self-study]	90					

Formative Assessment [PRESENCIAL][Assessment tests]	6
Global activity	
Activities	hours
Class Attendance (theory) [PRESENCIAL][Combination of methods]	34
Problem solving and/or case studies [PRESENCIAL][Combination of methods]	5
Laboratory practice or sessions [PRESENCIAL][Combination of methods]	15
Study and Exam Preparation [AUTÓNOMA][Self-study]	90
Formative Assessment [PRESENCIAL][Assessment tests]	6
	Total horas: 150

10. Bibliography and Sources						
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
lan P. Jones	Materials Science for Electrical and Electronic Engineers	d Oxford University Press		0-19856294-2	2001	
Otero Huerta, E	Corrosión y degradación de materiales	Síntesis	Madrid	84-7738-518-1	1997	
Smith. Willian F; Javad Hashemi	Fundamentos de la Ciencia e Ingeniería de materiales	McGraw Hill		9789701056387	2014	
Apraiz Barreiro, J.	Tratamientos térmicos de los aceros	Cie Dossat 2000 Décima edición	-	84-95312-56-5	2002	
Pat L. Mangonon	Ciencia de Materiales selección y diseño	Prentice Hall		970-26-0027-8	2001	
Juan Manuel Montes Martos, Francisco Gómez Cuevas, Jesús Cintas	Ciencia e ingeniería de los materiales	Paraninfo		9788428330176	2014	
Shackelford James F, Alfredo Güemes	Introducción a la Ciencia de Materiales para Ingenieros	Prentice Hall Iberia		84-8322-047-4	1998	
Smallman, R.E. and Bishop, R.	Metals and materials. Science, processes, applications	Butterworth Heinemann		0-7506-1093-X	1995	
Smith, William F.	Fundamentos de la ciencia e ingeniería de materiales	McGraw-Hill		0-07-296304-2 (CD-RO	2006	
W.D. Callister Jr and David G. Rethwish	Introducción a la Ciencia e ingeniería de los materiales Tomo y II	l Reverté		978-84-291-7251-5	2016	