

UNIVERSIDAD DE CASTILLA - LA MANCHA

GUÍA DOCENTE

1. General information

Course: Pl	ROGRAMMING METHODOLOG	γY		Code: 42316				
Type: Co	ORE COURSE			ECT	S credits: 6			
Dearee	06 - UNDERGRADUATE DEGR NGINEERING (AB)	EE IN COMPL	COMPUTER SCIENCE AND Academic year: 2023-24					
Center: 60	04 - SCHOOL OF COMPUTER S	SCIENCE AND	ENGI	NEERING (AB)	Group(s):10 11 12			
Year: 2			Duration: C2					
Main language: Sp	panish			Second	anguage: English			
Use of additional English Friendly: N								
Web site: Bilingual: Y								
Lecturer: JUAN ANTO	NIO GUERRERO ABENZA - Gr	oup(s): 10						
Building/Office	Department	Phone nu	mber	Email	Office hours			
Infante D. Juan Manuel/1A4	SISTEMAS INFORMÁTICOS	9260532	99	juan.guerrero@uclm.es				
Lecturer: ANTONIO LA	BIAN MOYA - Group(s): 11							
Building/Office	Department	Phone number	Email		Office hours			
	SISTEMAS INFORMÁTICOS		Antor	nio.Labian@uclm.es				
Lecturer: FERNANDO LOPEZ PELAYO - Group(s): 12								
Building/Office De	epartment	Phone numbe	r Ema	ail	Office hours			
ESII / 1A3 SI	ISTEMAS INFORMÁTICOS	926053121	ferr	nandol.pelayo@uclm.es	See the web			

2. Pre-Requisites

- Polynomials roots calculating
- Limits calculating
- Successions and series
- Iterative and Recursive programming strategies
- · Identifying and using the appropriate data structure that implements any algorithm

3. Justification in the curriculum, relation to other subjects and to the profession

- It provides appropriate methodology for solving complex / real problems that require more abstract approaches than those provided by the subjects of Programming Fundamentals.
- It contributes to get specific skills [BA3, CO6, CO7]
- It follows the learning program developed in both "Programming Fundamentals" and "Data Structures", and will be followed by both "Design of algorithms" and "Software Engineering" subjects

4. Degree competences achieved in this course					
Course competences					
Code	Description				
BA03	Ability to understand basic concepts about discrete mathematics, logic, algorithms, computational complexity, and their applications to solve engineering problems.				
CO06	Knowledge and application of basic algorithms in digital technologies for the development of solutions, analysing their appropriateness and complexity.				
CO07	Knowledge, design, and efficient use of types of data and structures which arise as most appropriate in problem solving.				
INS01	Analysis, synthesis, and assessment skills.				
INS04	Problem solving skills by the application of engineering techniques.				
SIS01	Critical thinking.				

5. Objectives or Learning Outcomes

Course learning outcomes

Description

Design of solutions for problems by the analysis of appropriateness and complexity of suggested algorithms.

Resolution of problems throughout basic techniques of algorithm design.

Additional outcomes

Sorting algorithms according to their complexity

Choosing and implementing the computationally cheapest methodology that solves a given problem

6. Units / Contents

Unit 1.1 Definition. Temporal complexity

Unit 1.2 Asymptotic complexity orders

Unit 1.3 Basic calculations

Unit 1.4 Real examples and Recursive Equations: Characteristic Ecuation. Non-homogeneus equations. Variable changes. Domain changes.

Unit 2: Greedy Algorithms

Unit 2.1 Overall technique

Unit 2.2 Basic features

Unit 2.3 Examples: Coins, the knapsack problem, scheduling, minimum spanning tree, single-course shortest paths problem

Unit 3: Dynamic Programming

- Unit 3.1 Overall technique
- Unit 3.2 Basic features

Unit 3.3 Examples: Coins, the knapsack problem, banks, optimal binary search trees, all-pairs shortest path problem, optimal binary search trees, disk

space, ...

Unit 4: Backtracking

- Unit 4.1 Overall technique
- Unit 4.2 Basic features

Unit 4.3 Examples: Generation of combinatorial objects, chess, graph colorings, cliques, Hamiltonian cycles, Sudoku, ...

7. Activities, Units/Modules and I	Methodology					
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com Description
Progress test [ON-SITE]	Assessment tests	BA03 CO06 CO07 INS01 INS04 SIS01	0.2	5	Y	270603) algorithms. Each test must be scored 40% at least. They could be separately recovered in extra term assessment holding the same 40% requirement
Final test [ON-SITE]	Assessment tests	BA03 CO06 CO07 INS01 INS04 SIS01	0.12	3	Y	[EVA] Ordinary assessment test for whom have not followed continuous N assessment mode. It follows exactly the same rules than previous progress tests (above)
Class Attendance (theory) [ON- SITE]	Lectures	BA03 CO06 CO07 SIS01	1	25	N	[MAG] Strategies for analyzing the resolution of the problem and the theoretical basis necessary for its resolution are provided
In-class Debates and forums [ON- SITE]	Project/Problem Based Learning (PBL)	BA03 INS01 SIS01	0.4	10	N	[PRO] The correction and/or - suitability of the proposed solutions is analyzed in class (in groups)
Class Attendance (practical) [ON- SITE]	Project/Problem Based Learning (PBL)	BA03 CO06 CO07 SIS01	0.8	20	N	[LAB] The problems of the subject are solved on paper and the solutions - are verified through their implementation/correction in the laboratory (in groups)
Writing of reports or projects [OFF- SITE]	Project/Problem Based Learning (PBL)	BA03 INS01 INS04	0.8	20	N	[RES] Theoretically unsolvable problems arise with the competences - that are supposed to the student and their resolution is entrusted to them (in a group)
On-line debates and forums [OFF- SITE]	Group tutoring sessions	BA03 INS01 SIS01	0.4	10	N	[TUT] Forum where the correctness and suitability of the proposed solutions is discussed, both from a theoretical point of view and its implementation in the laboratory (individual)
Writing of reports or projects [OFF- SITE]	Combination of methods	BA03 CO06 CO07 INS01 INS04 SIS01	0.8	20	Y	, N N the methodologies described in the chapters 2, 3 and 4 (in group). This is a non-recoverable activity
Study and Exam Preparation [OFF- SITE]	Combination of methods	BA03 CO06 CO07 INS01 INS04 SIS01	1.48	37	N	[EST] Preparation/study of theory and practical tests (individual)
		Total:		150		
		redits of in-class work: 2.52				
Total credits of out of class work: 3.48						Total hours of out of class work: 87

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System			
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description

Practicum and practical activities reports assessment	30.00%	20.00%	[INF 20% + PRES 10%]: Various aspects related to the activities done in the computing labs will be evaluated. This is a non- recoverable activity
Test	70.00%	0.00%	There will be 2 theory tests (continuous assessment).
Final test	0.00%	80.00%	[ESC 70% + LAB 10%] A comprehensive regular examination will be scheduled for those students who have not followed the continuous assessment.
Total:	100.00%	100.00%	

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

Evaluation criteria for the final exam:

Continuous assessment:

- There's no final exam. The mark of the ordinary call will be the result of the continuous assessment (Controls + Lab). To pass is required minimum grading 40% in each part, in addition the total aggregate must be greater or equal than 50% of the highest score achievable.

- By default, all students are enrolled in the continuous assessment mode. Those who wish to change to non-continuous evaluation must indicate it through the following link https://www.esiiab.uclm.es/alumnos/evaluacion.php before the end of the corresponding academic term, as long as 50% of the subject has not been evaluated, as established in the Student Evaluation Regulations.

Non-continuous evaluation:

- A comprehensive regular examination will be scheduled for those students who have not followed the continuous assessment. The grade of the ordinary exam will be the result of the "2 Tests + Lab". To pass is required minimum grading 40% in each part as each corresponds to different skills, in addition the total aggregate must be greater or equal than 50% of the highest score achievable.

- By default, all students are enrolled in the continuous assessment mode. Those who wish to change to non-continuous evaluation must indicate it through the following link https://www.esiiab.uclm.es/alumnos/evaluacion.php before the end of the corresponding academic term, as long as 50% of the subject has not been evaluated, as established in the Student Evaluation Regulations.

Specifications for the resit/retake exam:

Tests/activities will be scheduled to enable all but already assessed Lab work of the subject to be recovered.

To pass, the same conditions apply as in the ordinary call.

Specifications for the second resit / retake exam:

The same conditions apply as for the extraordinary call.

9. Assignments, course calendar and important dates	
Not related to the syllabus/contents	
Hours	hours
Progress test [PRESENCIAL][Assessment tests]	3
Final test [PRESENCIAL][Assessment tests]	37
Class Attendance (theory) [PRESENCIAL][Lectures]	3
On-line debates and forums [AUTÓNOMA][Group tutoring sessions]	20
Writing of reports or projects [AUTÓNOMA][Combination of methods]	10
Study and Exam Preparation [AUTÓNOMA][Combination of methods]	20

General comments about the planning: This course schedule is APPROXIMATE. It could vary throughout the academic course due to teaching needs, bank holidays, etc. A weekly schedule will be properly detailed and updated on the online platform (Campus Virtual). Note that all the lectures, practice sessions, exams and related activities performed in the bilingual groups will be entirely taught in English. This tentative scheduling could be modified due to unexpected issues The subject is taught in three weekly sessions of 1.5 hours.

Unit 1 (de 4): Algorthmic complexity	
Activities	Hours
Progress test [PRESENCIAL][Assessment tests]	2
Class Attendance (theory) [PRESENCIAL][Lectures]	10
In-class Debates and forums [PRESENCIAL][Project/Problem Based Learning (PBL)]	4
Class Attendance (practical) [PRESENCIAL][Project/Problem Based Learning (PBL)]	5
Unit 2 (de 4): Greedy Algorithms	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	5
In-class Debates and forums [PRESENCIAL][Project/Problem Based Learning (PBL)]	3
Class Attendance (practical) [PRESENCIAL][Project/Problem Based Learning (PBL)]	5
Unit 3 (de 4): Dynamic Programming	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	5
In-class Debates and forums [PRESENCIAL][Project/Problem Based Learning (PBL)]	3
Class Attendance (practical) [PRESENCIAL][Project/Problem Based Learning (PBL)]	5
Unit 4 (de 4): Backtracking	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	5
In-class Debates and forums [PRESENCIAL][Project/Problem Based Learning (PBL)]	3
Class Attendance (practical) [PRESENCIAL][Project/Problem Based Learning (PBL)]	5
Global activity	
Activities	hours
Progress test [PRESENCIAL][Assessment tests]	5
Class Attendance (theory) [PRESENCIAL][Lectures]	28
In-class Debates and forums [PRESENCIAL][Project/Problem Based Learning (PBL)]	13
Class Attendance (practical) [PRESENCIAL][Project/Problem Based Learning (PBL)]	20

On-line debates and forums [AUTÓNOMA][Group tutoring sessions] Writing of reports or projects [AUTÓNOMA][Combination of methods] Study and Exam Preparation [AUTÓNOMA][Combination of methods] Final test [PRESENCIAL][Assessment tests] 20 10 20 37 Total horas: 153

10. Bibliography and Sources	\$					
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
Aho, Alfred V.	The design and analysis of computer algorithms	Addison-Wesley		0-201-00029-6	1974	
Brassard, Gilles	Fundamentos de algoritmia	Prentice-Hall		978-84-89660-00-7	2006	
Guerequeta García, Rosa	Técnicas de diseño de algoritmos	Servicio de Publicaciones e Intercambio Científ		84-7496-784-8	2000	
Horowitz, Ellis	Fundamentals of computer algorithms	Computer Science Press		0-914894-22-6	1978	
Kernighan, Brian W.	La práctica de la programación	Pearson Educación		968-444-418-4	2000	
Parberry, lan	Problems on algorithms	Prentice-Hall		0-13-433558-9	1995	
Sedgewick, Robert (1946-)	An introduction to the analysis of algorithms	Addison-Wesley		978-0-321-90575-8	2013	