

# **UNIVERSIDAD DE CASTILLA - LA MANCHA**

# **GUÍA DOCENTE**

## 1. General information

| Course              | AERODYNAMICS                          | Code: 56722            |                         |                                     |                   |  |  |
|---------------------|---------------------------------------|------------------------|-------------------------|-------------------------------------|-------------------|--|--|
| Туре                | CORE COURSE                           |                        |                         | ECTS credits: 6                     |                   |  |  |
| Degree              | 403 - UNDERGRADUATE DE<br>ENGINEERING | Academic year: 2023-24 |                         |                                     |                   |  |  |
| Center              | r: 303 - E.DE INGENIERÍA INDU         | STRIAL Y AERO          | DESPOACIAL DE TOLEDO    | Group(s): 40                        |                   |  |  |
| Year                | r: 3                                  |                        |                         | Duration: First semester            |                   |  |  |
| Main language       | Spanish                               |                        |                         | Second language: English            |                   |  |  |
|                     | Use of additional English Friendly: Y |                        |                         |                                     |                   |  |  |
| Web site            | Web site: Bilingual: N                |                        |                         |                                     |                   |  |  |
| Lecturer: FRANCIS   | CO COBOS CAMPOS - Group(              | s): <b>40</b>          |                         |                                     |                   |  |  |
| Building/Office     | Department                            | Phone<br>number        | Email                   | Office hours                        |                   |  |  |
| Ed. Sabatini / 1.55 | MECÁNICA ADA. E ING.<br>PROYECTOS     |                        | Francisco.Cobos@uclm.es | Available at http://www.uclm.es/tol | edo/EIIA/tutorias |  |  |

## 2. Pre-Requisites

Before study this subject, it is convenient to have passed the subjects of Algebra, Calculus I and II, Physics I and II, Mathematical Methods, Technical Thermodynamics and Heat Transfer and Fluid Mechanics.

# 3. Justification in the curriculum, relation to other subjects and to the profession

It is a relevant subject in the aeronautical field. Its location and specialized orientation is based on the fact that the specific technology module in aerospace equipment and materials of the Degree in Aerospace Engineering includes competencies related to aerodynamics that can only be covered with specific subjects with such orientation.

| 4. Degree competend | ces achieved in this course                                                                                                                                                                                                                                                                          |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course competences  |                                                                                                                                                                                                                                                                                                      |
| Code                | Description                                                                                                                                                                                                                                                                                          |
| CA01                | Ability to carry out bibliographic searches, use databases and other sources of information for its application in tasks related to<br>Technical Aeronautical Engineering.                                                                                                                           |
| CA02                | Ability to efficiently design experimentation procedures, interpret the data obtained and specify valid conclusions in the field of Aeronautical Technical Engineering.                                                                                                                              |
| CA03                | Ability to autonomously select and carry out the appropriate experimental procedure, operating the equipment correctly, in the analysis of phenomena within the scope of Engineering.                                                                                                                |
| CA04                | Ability to select advanced tools and techniques and their application in the field of Aeronautical Technical Engineering.                                                                                                                                                                            |
| CA05                | Knowledge of the methods, techniques and tools as well as their limitations in the application for the resolution of problems typical of<br>Aeronautical Technical Engineering.                                                                                                                      |
| CA06                | Ability to identify and assess the effects of any solution in the field of Aeronautical Technical Engineering within a broad and global context and the ability to interrelate the solution to an engineering problem with other variables beyond the technological field, which must be considered. |
| CB02                | Apply their knowledge to their job or vocation in a professional manner and show that they have the competences to construct and justify arguments and solve problems within their subject area.                                                                                                     |
| CB03                | Be able to gather and process relevant information (usually within their subject area) to give opinions, including reflections on relevant social, scientific or ethical issues.                                                                                                                     |
| CB04                | Transmit information, ideas, problems and solutions for both specialist and non-specialist audiences.                                                                                                                                                                                                |
| CB05                | Have developed the necessary learning abilities to carry on studying autonomously                                                                                                                                                                                                                    |
| CE02                | Understanding and command of the basic concepts of the general laws of mechanics, thermodynamics, fields and waves and electromagnetism and their application to solve engineering problems.                                                                                                         |
| CE08                | knowledge of the thermodynamic cycles that generate mechanical power and thrust.                                                                                                                                                                                                                     |
| CE10                | Knowledge of flight dynamics based on aerodynamic forces and the role of the different variables involved in the phenomenon of flight                                                                                                                                                                |
| CE15                | Knowledge applied to Engineering of: The principles of the mechanics of the continuous medium and the techniques for calculating its response.                                                                                                                                                       |
| CE16                | Knowledge applied to Engineering of: The concepts and laws that govern the processes of energy transfer, the movement of fluids, the mechanisms of heat transmission and the change of matter and their role in the analysis of the main systems aerospace propulsion.                               |
| CE18                | Knowledge applied to Engineering of: The fundamentals of fluid mechanics; the basic principles of flight control and automation; the main characteristics and physical and mechanical properties of materials.                                                                                       |
| CE19                | Applied knowledge of: materials science and technology; mechanics and thermodynamics; fluid mechanics; aerodynamics and mechanics of flight; air traffic and navigation systems; aerospace technology; structure theory; air Transport; economy and production; Projects; environmental impact.      |
| CE21                | Knowledge applied to Engineering of: The fundamentals of fluid mechanics that describe flow in any regime and determine pressure distributions and aerodynamic forces.                                                                                                                               |
|                     | Knowledge applied to Engineering of: The methods of calculation and development of defense materials and systems; the<br>management of experimental techniques, equipment and measuring instruments typical of the discipline; the numerical simulation of                                           |

| CE25 | the most significant physical-mathematical processes; inspection, quality control and fault detection techniques; the most appropriate repair methods and techniques.                                                                                                                                                                                                                                           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CE26 | Applied knowledge of: aerodynamics; flight mechanics, air defense engineering (ballistics, missiles and air systems), space propulsion, materials science and technology, structural theory.                                                                                                                                                                                                                    |
| CG01 | Capacity for the design, development and management in the field of aeronautical engineering that have as their object, in accordance with the knowledge acquired as established in section 5 of order CIN/308/2009, aerospace vehicles, propulsion systems aerospace, aerospace materials, airport infrastructures, air navigation infrastructures and any space, traffic and air transport management system. |
| CG03 | Installation, operation and maintenance in the field of aeronautical engineering that have as their object, in accordance with the<br>knowledge acquired as established in section 5 of order CIN/308/2009, aerospace vehicles, aerospace propulsion systems, materials<br>aerospace, airport infrastructure, air navigation infrastructure and any space, traffic and air transport management system.         |
| CG05 | Ability to carry out activities of projection, technical direction, expert opinion, report writing, opinions, and technical advice on tasks<br>related to Aeronautical Technical Engineering, exercise of functions and genuine aerospace technical positions.                                                                                                                                                  |
| CG06 | Ability to participate in flight test programs to collect data on takeoff distances, climb rates, stall rates, maneuverability, and landing<br>capabilities.                                                                                                                                                                                                                                                    |
| CT03 | Correct use of oral and written communication.                                                                                                                                                                                                                                                                                                                                                                  |

#### 5. Objectives or Learning Outcomes

# Course learning outcomes

Description

Knowledge of the problem and calculations associated with the external and internal fluid dynamics and aerodynamics of the different equipment and systems of vehicles in the aerospace field.

Knowledge of the devices and geometries conditioned by aerodynamics in the different aircraft systems.

#### 6. Units / Contents

#### Unit 1: Introduction to Aerodynamics

- Unit 1.1 Aerodynamic forces and moments
- Unit 1.2 Center of pressure
- Unit 1.3 Stalling speed and aerodynamic efficiency
- Unit 1.4 Types of flow

#### Unit 1.5 Boundary layer theory

Unit 1.6 Magnitudes and variations of the aerodynamic coefficients

### Unit 2: Potential flow extension

Unit 2.1 Numerical source panel method

Unit 2.2 Flow over a circular cylinder, the real case

#### Unit 3: Incompressible flow over airfoils

- Unit 3.1 Airfoil nomenclature and characteristic. Polar.
- Unit 3.2 Vortex sheet. Solutions for low.speed flow over airfoils.
- Unit 3.3 The Kutta condition
- Unit 3.4 Kelvin circulation theorem and the starting vortex
- Unit 3.5 Classical thin airfoil theory. Simetric and cambered airfoils.
- Unit 3.6 Vortex panel numerical method
- Unit 3.7 Modern low-speed airfoils

Unit 3.8 Airfoil drag

#### Unit 3.9 Types of stall. High-lift devices.

Unit 4: Incompressible flow over finite wings

#### Unit 4.1 Downwash and induced drag

- Unit 4.2 Biot-Savart law and Helmholtz theorems
- Unit 4.3 Prandtl classical lifting-line theory. Elliptical lift and general lift distributions. Effect of aspect ratio.

Unit 4.4 Span loading

- Unit 4.5 Numerical nonlinear lifting-line method
- Unit 4.6 The lifting-surface theory and the vortex lattice numerical method
- Unit 4.7 Low-aspect-ration and swept wings
- Unit 4.8 Delta wings

#### Unit 5: Three-dimensional incompressible flow

- Unit 5.1 Three-dimensional basic potential flows
- Unit 5.2 Flow over a sphere
- Unit 5.3 Three-dimensional panel techniques
- Unit 5.4 Real flow over a sphere
- Unit 5.5 Airpane lift and drag. Wing-body interaction.

#### Unit 6: Compressible flow

- Unit 6.1 Review of Themodynamics
- Unit 6.2 Stagnation conditions
- Unit 6.3 normal hosck waves
- Unit 6.4 Oblique shock waves
- Unit 6.5 Shock-wave/boudary-layer interaction
- Unit 6.6 Bow shock

### Unit 6.7 Prandtl-Meyer expansion waves

# Unit 7: Subsonic compressible flow

- $\label{eq:unit_relation} \textbf{Unit 7.1} \ \ \textbf{The velocity potential equation and its linearized version}$
- Unit 7.2 Prandtl-Glauert and improved compressibility corrections
- Unit 7.3 Transonic regime. Critical and drag-divergence Mach numbers. The area rule. Supercritical airfoils.

#### Unit 8: Supersonic flow

- Unit 8.1 Aplication to supersonic airfoils of the shock-expansion theory
- Unit 8.2 Linearized supersonic pressure coefficient formula
- Unit 8.3 Supersonic area rule
- Unit 8.4 Supersonic airfoul drag
- Unit 8.5 Slender-body theory. Flow over cones.

#### Unit 9: Laboratory

- Unit 9.1 Measure of velocity in compressible flow
- Unit 9.2 Subsonic and supersonic inlets. Other devices affect by aerodynamics.
- Unit 9.3 Supersonic wind tunnels
- Unit 9.4 Computational Fluid Dynamics

| 7. Activities, Units/Modules and Methodology     |                                               |                                                                                                                                                |      |       |    |     |                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Training Activity                                | Methodology                                   | Related Competences<br>(only degrees before RD<br>822/2021)                                                                                    | ECTS | Hours | As | Com | Description                                                                                                                                                                                                                                                                                                       |
| Class Attendance (theory) [ON-<br>SITE]          | Lectures                                      | CA01 CA02 CA03 CA04<br>CA05 CA06 CB02 CB03<br>CB04 CB05 CE02 CE08<br>CE10 CE15 CE16 CE18<br>CE19 CE21 CE25 CE26<br>CG01 CG03 CG05 CG06<br>CT03 | 1.6  | 40    | N  | -   | Development in the classroom of the theoretical contents.                                                                                                                                                                                                                                                         |
| Problem solving and/or case<br>studies [ON-SITE] | Project/Problem Based Learning<br>(PBL)       | CA01 CA02 CA03 CA04<br>CA05 CA06 CB02 CB03<br>CB04 CB05 CE02 CE08<br>CE10 CE15 CE16 CE18<br>CE19 CE21 CE25 CE26<br>CG01 CG03 CG05 CG06<br>CT03 | 0.4  | 10    | Y  | N   | Resolution of exercises and<br>problems in the classroom in a<br>collective way.                                                                                                                                                                                                                                  |
| Laboratory practice or sessions<br>[ON-SITE]     | Practical or hands-on activities              | CA01 CA02 CA03 CA04<br>CA05 CA06 CB02 CB03<br>CB04 CB05 CE02 CE08<br>CE10 CE15 CE16 CE18<br>CE19 CE21 CE25 CE26<br>CG01 CG03 CG05 CG06<br>CT03 | 0.24 | 6     | Y  |     | Laboratory experiments where the<br>student developes the knowledge<br>acquired in the theoretical classes<br>through experimentation.                                                                                                                                                                            |
| Writing of reports or projects [OFF-<br>SITE]    | Cooperative / Collaborative<br>Learning       | CA01 CA02 CA03 CA04<br>CA05 CA06 CB02 CB03<br>CB04 CB05 CE02 CE08<br>CE10 CE15 CE16 CE18<br>CE19 CE21 CE25 CE26<br>CG01 CG03 CG05 CG06<br>CT03 | 0.6  | 15    | Y  | Y   | Continuining the work begun in<br>laboratory, students must<br>cooperatively prepare a report where<br>they analyze and show the results<br>and conclusions of their experiments.<br>The student who obtains less than<br>40% of the maximum mark will be<br>able to recover this part in the final<br>exam.      |
| Progress test [ON-SITE]                          | Assessment tests                              | CA01 CA02 CA03 CA04<br>CA05 CA06 CB02 CB03<br>CB04 CB05 CE02 CE08<br>CE10 CE15 CE16 CE18<br>CE19 CE21 CE25 CE26<br>CG01 CG03 CG05 CG06<br>CT03 | 0.06 | 1.5   | Y  |     | Mid-term written test (first one) to<br>eliminate the subject, which contains<br>problems and/or theoretical<br>questions corresponding<br>approximately to the first half of the<br>course. The student who obtains less<br>than 40% of the maximum mark will<br>be able to pass this part in the final<br>exam. |
| Final test [ON-SITE]                             | Assessment tests                              | CA01 CA02 CA03 CA04<br>CA05 CA06 CB02 CB03<br>CB04 CB05 CE02 CE08<br>CE10 CE15 CE16 CE18<br>CE19 CE21 CE25 CE26<br>CG01 CG03 CG05 CG06<br>CT03 | 0.1  | 2.5   | Y  |     | Final test with problems and/or<br>theoretical questions referring to the<br>whole course.                                                                                                                                                                                                                        |
| Study and Exam Preparation [OFF-<br>SITE]        | Self-study                                    | CA01 CA02 CA03 CA04<br>CA05 CA06 CB02 CB03<br>CB04 CB05 CE02 CE08<br>CE10 CE15 CE16 CE18<br>CE19 CE21 CE25 CE26<br>CG01 CG03 CG05 CG06<br>CT03 | 3    |       | N  |     | Self-study of theory and problems,<br>from which the student parctices and<br>fixes the knowledge learned in<br>classes in the classroom.                                                                                                                                                                         |
|                                                  | Total:<br>Total credite of in close work: 2.4 |                                                                                                                                                |      |       |    |     | Table of the second                                                                                                                                                                                                                                                                                               |
|                                                  | Total credits of in-class work: 2.4           |                                                                                                                                                |      |       |    |     | Total class time hours: 60                                                                                                                                                                                                                                                                                        |
| Total credits of out of class work: 3.6          |                                               |                                                                                                                                                |      |       |    |     | Total hours of out of class work: 90                                                                                                                                                                                                                                                                              |

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

| Evaluation System                                     | Continuous<br>assessment | Non-<br>continuous<br>evaluation* | Description                                                                                                                                                                        |  |  |
|-------------------------------------------------------|--------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mid-term tests                                        | 45.00%                   | 10 00%                            | C: mid-term tests with contents of the course<br>NC: it does not apply                                                                                                             |  |  |
| Practicum and practical activities reports assessment | 10.00%                   | 10.00%                            | C: realization of laboratory experiments and delivery of a report<br>NC: this part will be evaluated in the final test through questions<br>related to the laboratory experiences. |  |  |
| Final test                                            | 45.00%                   | 90 00%                            | C: it does not apply<br>NC: final test (with the contents of all the partial tests)                                                                                                |  |  |
| Total:                                                | 100.00%                  | 100.00%                           |                                                                                                                                                                                    |  |  |

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

# Evaluation criteria for the final exam:

### Continuous assessment:

Who obtains equal to or more than 40% of the maximum mark in the first mid-term test and 40% of the maximum mark in the laboratory part, may decide to only take the second mid-term test (which corresponds to the second half of the subject) in the final exam. Otherwise, he must repeat the first mid-term test and/or the laboratory part during the final test. To pass the subject, it is necessary to obtain at least 40% of the mark in each mid-term test and in the laboratory, and to get an average mark equal to or greater than 50% of the maximum mark of the course.

## Non-continuous evaluation:

Who does not access the continuous evaluation will be evaluated in the final test, which will include questions related to the laboratory experiences.

## Specifications for the resit/retake exam:

Same evaluation criteria will be applied as in the non-continuous evaluation.

### Specifications for the second resit / retake exam:

Same evaluation criteria will be applied as in the non-continuous evaluation.

| 9. Assignments, course calendar and important dates                                                            |                                                     |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Not related to the syllabus/contents                                                                           |                                                     |
| Hours                                                                                                          | hours                                               |
| Writing of reports or projects [AUTÓNOMA][Cooperative / Collaborative Learning]                                | 15                                                  |
| Progress test [PRESENCIAL][Assessment tests]                                                                   | 1.5                                                 |
| Final test [PRESENCIAL][Assessment tests]                                                                      | 2.5                                                 |
| Study and Exam Preparation [AUTÓNOMA][Self-study]                                                              | 75                                                  |
| General comments about the planning: This time distribution could be modified behind particular circumstance   | es, happening during the development of the         |
| course, so advise. The contents, methodology and evaluation systems of the subject could be modified, with the | e authorization of the university authorities. In a |
| case, the acquisition of the skills of the subject will be ensured.                                            |                                                     |
| Unit 1 (de 9): Introduction to Aerodynamics                                                                    |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 2                                                   |
| Unit 2 (de 9): Potential flow extension                                                                        |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 2                                                   |
| Unit 3 (de 9): Incompressible flow over airfoils                                                               |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 8                                                   |
| Problem solving and/or case studies [PRESENCIAL][Project/Problem Based Learning (PBL)]                         | 3                                                   |
| Unit 4 (de 9): Incompressible flow over finite wings                                                           |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 8                                                   |
| Problem solving and/or case studies [PRESENCIAL][Project/Problem Based Learning (PBL)]                         | 3                                                   |
| Unit 5 (de 9): Three-dimensional incompressible flow                                                           |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 4                                                   |
| Unit 6 (de 9): Compressible flow                                                                               |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 4                                                   |
| Unit 7 (de 9): Subsonic compressible flow                                                                      |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 6                                                   |
| Problem solving and/or case studies [PRESENCIAL][Project/Problem Based Learning (PBL)]                         | 2                                                   |
| Unit 8 (de 9): Supersonic flow                                                                                 |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 4                                                   |
| Problem solving and/or case studies [PRESENCIAL][Project/Problem Based Learning (PBL)]                         | 2                                                   |
| Unit 9 (de 9): Laboratory                                                                                      |                                                     |
| Activities                                                                                                     | Hours                                               |
| Class Attendance (theory) [PRESENCIAL][Lectures]                                                               | 2                                                   |
| Laboratory practice or sessions [PRESENCIAL][Practical or hands-on activities]                                 | 6                                                   |
| Global activity                                                                                                |                                                     |

| Activities                                                                             | hours            |
|----------------------------------------------------------------------------------------|------------------|
| Class Attendance (theory) [PRESENCIAL][Lectures]                                       | 40               |
| Writing of reports or projects [AUTÓNOMA][Cooperative / Collaborative Learning]        | 15               |
| Progress test [PRESENCIAL][Assessment tests]                                           | 1.5              |
| Final test [PRESENCIAL][Assessment tests]                                              | 2.5              |
| Problem solving and/or case studies [PRESENCIAL][Project/Problem Based Learning (PBL)] | 10               |
| Study and Exam Preparation [AUTÓNOMA][Self-study]                                      | 75               |
| Laboratory practice or sessions [PRESENCIAL][Practical or hands-on activities]         | 6                |
|                                                                                        | Total horas: 150 |

| 10. Bibliography and Sources                    |                                                            |                          |      |                   |      |             |
|-------------------------------------------------|------------------------------------------------------------|--------------------------|------|-------------------|------|-------------|
| Author(s)                                       | Title/Link                                                 | Publishing<br>house      | Citv | ISBN              | Year | Description |
| J.J. Bertin & R.M. Cummings,                    | Aerodynamics for engineers                                 | Pearson<br>Prentice-Hall |      | 978-0-13-235521-6 | 2009 |             |
| J.D. Anderson Jr.                               | Fundamentals of Aerodynamics                               | McGraw-Hill<br>Education |      | 978-12-5912-991-9 | 2016 |             |
| J.M. Gordillo & G. Riboux                       | Introducción a la Aerodinámica<br>potencial                | Paraninfo                |      | 978-84-9732-994-1 | 2012 |             |
| J. Meseguer & A. Sanz                           | Aerodinámica básica                                        | Garceta                  |      | 978-84-9281-271-4 | 2011 |             |
| A. Barrero, J. Meseguer, A. Sanz                | Aerodinámica de altas velocidades                          | Garceta                  |      | 978-84-9281-294-3 | 2011 |             |
| F. Gandía, J. Gonzalo, X. Margot, J<br>Meseguer | l. Fundamentos de los métodos<br>numéricos en Aerodinámica | Garceta                  |      | 978-84-1545-247-8 | 2013 |             |