

UNIVERSIDAD DE CASTILLA - LA MANCHA GUÍA DOCENTE

1. General information

Course: PROCESS DYNAMICS. PLANTWIDE PROCESS CONTROL

Type: CORE COURSE

Degree: 2336 - MASTER DEGREE PROGRAM IN CHEMICAL ENGINEERING

Center: 1 - FACULTY OF SCIENCE AND CHEMICAL TECHNOLOGY

Year: 1

Main language: Spanish

Use of additional languages:

Web site:

Duration: First semester Second language: English

Academic year: 2023-24

Code: 310743

Group(s): 20

ECTS credits: 6

English Friendly: Y

Bilingual: N

Lecturer: MANUEL ANDRES RODRIGO RODRIGO - Group(s): 20								
Building/Office	Department	Phone number	Email	Offi	ffice hours			
Enrique Costa. Despacho 01	INGENIERÍA QUÍMICA	3411	manijei rodrido <i>id</i> ilicim es		onday, Wednesday and Friday 9:00-11:00 Please book with CLM app for a better schedulling			
Lecturer: JOSE LUIS VALVERDE PALOMINO - Group(s): 20								
Building/Office	Department	Phone number Email Office hours			Office hours			
Enrique Costa. Despacho 11	INGENIERÍA QUÍMICA	926295300	joseluis.valverde@uclm.es		Monday, Wednesday & Friday 11:00-12:00 Please book with UCLM app for a better schedulling			

2. Pre-Requisites

Not established

3. Justification in the curriculum, relation to other subjects and to the profession

Not established

МС3

MC4

Course compe	etences
Code	Description
CB07	To be able to apply acquired knowledge and problem-solving skills in new or unknown environments within broader (or multidisciplinary) contexts related to their area of study
CB09	To be able to communicate their findings, and the ultimate knowledge and reasons behind them, to specialist and non-specialist audiences in a clear and unambiguous manner
E02	To design products, processes, systems and services of the chemical industry, as well as the optimization of others already developed, taking as technological base the diverse areas of the chemical engineering, comprehensive of processes and transport phenomena, separation processes and engineering of the chemical, nuclear, electrochemical and biochemical reactions.
E03	To conceptualize engineering models, apply innovative methods in problem solving and appropriate software applications, for the design, simulation, optimization and control of processes and systems.
E05	To direct and supervise all types of installations, processes, systems and services of the different industrial areas related to chemical engineering.
E11	To direct and carry out verification, control of facilities, processes and products, as well as certifications, audits, verifications, tests and reports.
G01	To have adequate knowledge to apply the scientific method and the principles of engineering and economics, to formulate and solve complex problems in processes, equipment, facilities and services, in which matter undergoes changes in its composition, state or energy content, characteristic of the chemical industry and other related sectors including the pharmaceutical, biotechnological, materials, energy, food or environmental sectors.
G02	To conceive, project, calculate and design processes, equipment, industrial facilities and services, in the field of chemical engineering and related industrial sectors, in terms of quality, safety, economy, rational and efficient use of natural resources and environmental conservation.
G03	To direct and manage technically and economically projects, installations, plants, companies and technology centres in the field of chemical engineering and related industrial sectors.
G05	To know how to establish mathematical models and develop them by means of appropriate computing, as a scientific and technologica basis for the design of new products, processes, systems and services, and for the optimization of others already developed.
G09	To communicate and discuss proposals and conclusions in multilingual forums, specialized and non-specialized, in a clear and unambiguous way
G10	To adapt to changes, being able to apply new and advanced technologies and other relevant developments, with initiative and entrepreneurial spirit
G11	To possess the skills of autonomous learning in order to maintain and improve the competences of chemical engineering that allow the continuous development of the profession
MC1	To have acquired advanced knowledge and demonstrated an understanding of the theoretical and practical aspects and of the working methodology in the field of Chemical Engineering with a depth that reaches the forefront of knowledge
MC2	To be able, through arguments or procedures developed and supported by themselves, to apply their knowledge, understanding and problem-solving skills in complex or professional and specialized work environments that require the use of creative or innovative ideas

relevant, reflection on social, scientific or ethical issues in the field of chemical engineering

problem-solving skills in complex or professional and specialized work environments that require the use of creative or innovative ideas To have the ability to collect and interpret data and information on which to base their conclusions including, where necessary and

To be able to deal with complex situations or those that require the development of new solutions in the academic, work or professional

MC5

field of study of Chemical Engineering
To know now to communicate to all types of audiences (specialized or not) in a clear and precise way, knowledge, methodologies,
ideas, problems and solutions in the field of the study of Chemical Engineering

To be able to identify their own training needs in the field of study of Chemical Engineering and work or professional environment and to organize their own learning with a high degree of autonomy in all kinds of contexts (structured or unstructured).

5. Objectives or Learning Outcomes

Course learning outcomes

Description

MC6

To have the skills in the use of commercial simulators for the dynamic simulation of processes.

To have the skills to instrument and operate a full-scale chemical process facility.

To have the ability to dynamically characterize an open or closed loop system in the domains of time, Laplace and frequency

To have the skills to project the automation of a complex industrial process.

6. Units / Contents

Unit 1: Advanced Dynamics

Unit 1.1 General concepts of dynamics in the time and Laplace domains

Unit 1.2 Frequency domain

Unit 2: Local Control

Unit 2.1 Continuous control

Unit 2.2 Sequential Control

Unit 3: Industrial Plant Control

Unit 3.1 Digital communication and distribution control arquitecture

Unit 3.2 SCADA Systems

Unit 3.3 Model Based Predictive Control Systems

Unit 3.4 Control Arquitecture in full scale plants

Unit 3.5 Control Arquitecture in R+D systems

Unit 4: Dynamic Simulation of Chemical Processes

Unit 4.1 Fundamentals. Process simulation with PID regulation. Case studies

Unit 4.2 Dead time effects and capacitance. Case studies

Unit 5: Advanced process Control and tunning controllers using ASPENTECH HYSYS

Unit 6: Dynamic simulation of automatically regulated chemical processes

Unit 6.1 Individual units. Case studies

Unit 6.2 Industrial processes. Case studies

ADDITIONAL COMMENTS, REMARKS

According to the schedule of activities, part of the syllabus will be taught in English, especially cases and practical activities. Students' level of English will not be assesse

7. Activities, Units/Modules and M	7. Activities, Units/Modules and Methodology								
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	Description		
Class Attendance (theory) [ON- SITE]	Combination of methods	CB07 CB09 E02 E03 E05 E11 G01 G02 G03 G05 G09 G10 G11 MC1 MC2 MC3 MC4 MC5 MC6	0.6	15	N	-			
Computer room practice [ON-SITE]	Case Studies	CB07 CB09 E02 E03 E05 E11 G01 G02 G03 G05 G09 G10 G11 MC1 MC2 MC3 MC4 MC5 MC6	1	25	Υ	N			
Workshops or seminars [ON-SITE]	Problem solving and exercises	CB07 CB09 E02 E03 E05 E11 G01 G02 G03 G05 G09 G10 G11 MC1 MC2 MC3 MC4 MC5 MC6	0.6	15	Υ	N			
In-class Debates and forums [ON- SITE]	Case Studies	CB07 CB09 E02 E03 E05 E11 G01 G02 G03 G05 G09 G10 G11 MC1 MC2 MC3 MC4 MC5 MC6	0.12	3	N	-			
Other off-site activity [OFF-SITE]		CB07 CB09 E02 E03 E05 E11 G01 G02 G03 G05 G09 G10 G11 MC1 MC2 MC3 MC4 MC5 MC6	3.6	90	N	-			
Final test [ON-SITE]	Assessment tests	CB07 CB09 E02 E03 E05 E11 G01 G02 G03 G05 G09 G10 G11 MC1 MC2 MC3 MC4 MC5 MC6	0.08	2	Υ	Υ			
Total:									
	Total credits of in-class work: 2.4 Total credits of out of class work: 3.6					Total class time hours: 60			
As: Assessable training activity	lotal cre	alts of out of class work: 3.6					Total hours of out of class work: 90		

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System						
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description			
Assessment of problem solving and/or case studies	30.00%	0.00%				
Practicum and practical activities reports assessment	30.00%	0.00%				
Final test	40.00%	100.00%				
Total:	100.00%	100.00%				

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

Evaluation criteria for the final exam:

Continuous assessment:

 $\label{eq:minimum} \mbox{Minimum grade 4.0/10 in each of the evaluation systems and average value higher than 5.0/10.}$

Non-continuous evaluation:

Students who have not done the corresponding part of problems or cases of the subject, will be evaluated of these competences in the final exam.

Specifications for the resit/retake exam:

There are no particularities. The grades obtained in the problems or cases are maintained for the students who have passed them in the ordinary call Specifications for the second resit / retake exam:

There are no particularities.

Not related to the syllabus/contents					
Hours	hours				
Class Attendance (theory) [PRESENCIAL][Combination of methods]	15				
Computer room practice [PRESENCIAL][Case Studies]	25				
Workshops or seminars [PRESENCIAL][Problem solving and exercises]	15				
In-class Debates and forums [PRESENCIAL][Case Studies]	3				
Other off-site activity [AUTÓNOMA][]	90				
Final test [PRESENCIAL][Assessment tests]	2				
General comments about the planning: The assignment of hours to specific topics is not an elementhe course, since some of the training activities correspond to several topics simultaneously. In the commission, all the dates of classes and seminars are collected, although they can be slightly modified.	corresponding course planning guide, agreed in the title				

Global activity		
Activities	hours	
Computer room practice [PRESENCIAL][Case Studies]	25	
Workshops or seminars [PRESENCIAL][Problem solving and exercises]	15	
Class Attendance (theory) [PRESENCIAL][Combination of methods]	15	
In-class Debates and forums [PRESENCIAL][Case Studies]	3	
Other off-site activity [AUTÓNOMA][]	90	
Final test [PRESENCIAL][Assessment tests]	2	
	Total horas: 150	

10. Bibliography and Sources						
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
	Perry's chemical engineers' handbook /	McGraw-Hill Book Company,		978-0-07-142294-9	2008	
Luyben, William L.	Distillation design and control using AspenTM simulation	John Wiley & Sons		0-471-77888-5	2006	
Luyben, William L.	Plantwide dynamic simulators in chemical processing and cont	Marcel Dekker		0-8247-0801-6	2002	
Luyben, William L.	Process modeling, simulation, and control for chemical engin	McGraw-Hill		0-07-039159-9	1990	
Mandado Pérez, Enrique	Dispositivos lógicos programables	Paraninfo		84-9732-054-9	2002	
Ogunnaike, Babatunde A.	Process dynamics, modeling, and control	Oxford University Press		0-19-509119-1	1994	
Shinskey, F. G.	Sistemas de control de procesos : aplicación, diseño y sinto	McGraw-Hill		970-10-0934-7	1996	
W.D. Seider; D. R. Lewin; J.D. Seader; S. Widagno; R. Gani; K.M. Ng	Product and process design principles synthesis, analysis, a	John Wiley & Sons,		978-1-119-58800-9 (2017	