

To achieve the learning objectives is necessary knowledge and skills that are supposed to be guaranteed in the training prior to entering the university. In particular, basic knowledge of geometry, algebra and trigonometry, elementary mathematical operations (powi

3. Justification in the curriculum, relation to other subjects and to the profession

As in any scientific discipline, in Chemistry, Mathematics is an indispensable tool for the understanding and development of any of its branches. Mathematics is the foundation and origin of modern theories of atomic and molecular structure, they allow to deal with pri The mathematical concepts studied in the Mathematics course provide an essential tool and constitute a precise language that is used by most of the basic subjects. The subject of Mathematics helps to enhance the abstraction, rigor, analysis and synthesis capacitie

4. Degree competences achieved in this course	
Course competences	Description
Code	Prove that they have acquired and understood knowledge in a subject area that derives from general secondary education and is appropriate to a level based on advanced course books, and includes updated and CB01 cutting-edge aspects of their field of knowledge.
E17	Develop the ability to relate to each other the different specialties of Chemistry, as well as this one with other disciplines (interdisciplinary character) K01
Know the principles and theories of Chemistry, as well as the methodologies and applications characteristic of analytical chemistry, physical chemistry, inorganic chemistry and organic chemistry, understanding the physical and mathematical bases that require	
T02	Domain of Information and Communication Technologies (ICT)
TO3	Proper oral and written communication
T05	Organization and planning capacity
T07	Ability to work as a team and, where appropriate, exercise leadership functions, fostering the entrepreneurial character
T08	Skills in interpersonal relationships

5. Objectives or Learning Outcomes

ourse learning outcomes
Description
Know the matrix theory and know how to carry out the corresponding calculations.
Get used to teamwork, express yourself orally and in writing, and behave respectfully.
Knowing how to derive, integrate and represent functions of one and several variables, as well as the meaning and applications of the derivative and the integral.
Know how to model chemical processes through differential equations, solve them and interpret results.
Know how to use the language of Mathematics.

6. Units / Contents

Unit 1: Linear Algebra
Unit 1.1 Matrix and determinants
Unit 1.2 Linear equations systems
Unit 1.3 Solving linear equations systems with MatLab
Unit 2: Vector Spaces
Unit 2.1 Definition of vector space
Unit 2.2 Vector subspaces
Unit 2.3 Linear combination. Generator systems
Unit 2.4 Linear independence and dependence
Unit 2.5 Basis. Dimension
Unit 2.6 Subspaces equations
Unit 2.7 Change of basis
Unit 3: Euclidean vector spaces
Unit 3.1 Scalar product. Euclidean vector space
Unit 3.2 Norm and angle
Unit 3.3 Orthogonality. Gram-Schmidt method
Unit 4: Linear transformations
Unit 4.1 Linear transformation
Unit 4.2 Kernel and image
Unit 4.3 Matrix representation
Unit 4.4 Operations
Unit 4.5 Change of basis
Unit 5: Eigenvalues and eigenvectors
Unit 5.1 Eigenvalues and eigenvectors
Unit 5.2 Proper subspaces
Unit 5.3 Diagonalizing a matrix
Unit 5.4 Diagonalizing a matrix with Matlab
Unit 6: One variable Integral and differential calculus
Unit 6.1 Limits and continuity
Unit 6.2 Derivative
Unit 6.3 Maximum and minimum. Convexity
Unit 6.4 Taylor polinomial
Unit 6.5 Definite and indefinite integrals
Unit 6.6 Improper integrals
Unit 6.7 Graphics, derivation and integ
Unit 6.7 Graphics, derivation and integrals with Matlab
Unit 7.1 Multivariable functions
Unit 7.2 Global and directional limits. Continuity
Unit 7.3 Partial derivatives. Gradient
Unit 7.4 Chain rule
Unit 7.5 Taylor polinomial
Unit 7.5 Critical points Marimumand
Unit 7.6 Critical points. Maximumand
Unit 7.7 Lagrange multiplier method
Unit 7.8 Graphics, derivation and optimization with Matlab
Unit 8: Multiple integrals
Unit 8.1 Doble integrals
Unit 8.2 Triple integrals
Unit 8.3 Linear integral
Unit 8.4 Surface integral
Unit 9 : Ordinary differential equations
Unit 9.1 Introduction to differential equations
Unit 9.2 Solving first order differential equations
Unit 9.3 Solving second order differential equations
Unit 9.4 Qualitative properties of differential equationsof differential equations
Unit 9.5 Solving ordinary differential equations with Matlab
Unit 10: Systems of Ordinary differential equations
Unit 10.1 Solving systems of first order ordinary differential equation
Unit 10.2 Qualitative properties of systems of first order ordinary differential equations
Unit 10.3 Solving systems of ordinary differential equations with Matlab

Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	Description	
Class Attendance (theory) [ON-SITE]	Lectures	CB01 E17 G01	2.68	67	N			
Problem solving and/or case studies [ON-SITE]	Problem solving and exercises	CB01 E17 G01	0.88	22	N			
Computer room practice [ON-SITE]	Practical or hands-on activities	CB01 E17 G01 T02	0.44	11	Y	Y		
Progress test [ON-SITE]	Assessment tests	CB01 E17 G01	0.08	2	Y	N		
Progress test [ON-SITE]	Assessment tests	CB01 E17 G01	0.16	4	Y	Y		
Final test [ON-SITE]	Assessment tests	CB01 E17 G01	0.08	2	Y	Y		
Study and Exam Preparation [OFF-SITE]	Self-study	T03 T05 T07 T08	7.68	192	N			
		Total:	12	300				
		Total credits of in-class work: 4.32						Total class time hours: 108
		Total credits of out of class work: 7.68						Total hours of out of class work: 192

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System				
Evaluation System		Continuous assessment	Non-continuous evaluation*	Description
Progress Tests		20.00\%	0.00\%	Two progress test: one in the first semester and other one in the second semester.
Test		70.00\%	90.00\%	One test each semester.
Assessment of activities done in the computer labs		10.00\%	10.00\%	Test using the software MATLAB.
	Total:	100.00\%	100.00\%	

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

valuation criteria for the final exam

Continuous assessment:
Continuous evaluation involves the realization of:
-two progress tests whose average grade weighs 20% in the final grade.

- two midterm exams whose average grade weighs 70% in the final grade, if each midterm has been passed or has obtained a grade equal or higher than 4.0
- two computer tests with the Matlab software whose average grade weighs 10% of the final grade.

The course is passed if the final grade is equal or higher than 5.0 . If the final grade of the course is lower than 5.0 , the student has failed the course and must take the exam in the ordinary exam session
on-continuous evaluation:
evaluation involves the realization of
-a final exam of the entire syllabus in the ordinary call whose grade weighs 90% in the final grade.
-a computer test with the Matlab software in the ordinary exam, which grade weighs 10% in the final grade.
The course is passed if the final grade is equal or higher than 5.0 . If the final grade of the course is lower than 5.0 , the student has failed the course and must take the exam in the extraordinary convocation.

9. Assignments, course calendar and important dates	
Not related to the syllabus/contents	
Hours	hours
Progress test[PRESENCIAL][Assessment tests]	2
Progress test[PRESENCIAL [Assessment tests]	4
Final test [PRESENCIAL][Assessment tests]	2
Unit 1 (de 10): Linear Algebra	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	3
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	2
Computer room practice [PRESENCIAL][Practical or hands-on activities]	2
Study and Exam Preparation [AUTÓNOMA][Sel-study]	10
Unit 2 (de 10): Vector Spaces	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	5
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	2
Study and Exam Preparation [AUTÓNOMA][Self-study]	11
Unit 3 (de 10): Euclidean vector spaces	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	4
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	3
Study and Exam Preparation [AUTÓNOMA][Self-study]	10
Unit 4 (de 10): Linear transformations	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	3
Problem solving and/or case studies [PRESENCIALI[Problem solving and exercises]	2
Study and Exam Preparation [AUTÓNOMA][Self-study]	11
Unit 5 (de 10): Eigenvalues and eigenvectors	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	4
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	1
Computer room practice [PRESENCIAL][Practical or hands-on activities]	1
Study and Exam Preparation [AUTÓNOMA][Self-study]	11
Unit 6 (de 10): One variable Integral and differential calculus	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	10
Problem solving and/or case studies [PRESENCIALI[Problem solving and exercises]	3
Computer room practice [PRESENCIAL][Practical or hands-on activities]	2
Study and Exam Preparation [AUTÓNOMA][Self-study]	28
Unit 7 (de 10): Multivariable differential calculus	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	10
Problem solving and/or case studies [PRESENCIALI[Problem solving and exercises]	2
Computer room practice [PRESENCIAL][Practical or hands-on activities]	2
Study and Exam Preparation [AUTÓNOMA][Self-study]	28
Unit 8 (de 10): Multiple integrals	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	9
Problem solving and/or case studies [PRESENCIAL.\|[Problem solving and exercises]	2
Computer room practice [PRESENCIAL][Practical or hands-on activities]	1
Study and Exam Preparation [AUTÓNOMA][Self-study]	28
Unit 9 (de 10): Ordinary differential equations	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	8
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	2
Computer room practice [PRESENCIAL][Practical or hands-on activities]	1
Study and Exam Preparation [AUTÓNOMA][Self-study]	28
Unit 10 (de 10): Systems of Ordinary differential equations	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	11
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	3
Computer room practice [PRESENCIAL][Practical or hands-on activities]	2
Study and Exam Preparation [AUTÓNOMA][Self-study]	27
Global activity	
Activities	hours

Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]
Class Attendance (theory) [PRESENCIAL][Lectures]
Computer room practice [PRESENCIAL][Practical or hands-on activities]
Computer room practice [PRESENCIAL.|Practica
Progress test [PRESENCIALI]Assessment tests]
Progress test [PRESENCIAL]|Assessment tes
Final test [PRESENCIAL[Assessment tests]
Study and Exam Preparation [AUTÓNOMA][Self-study]

10. Bibliography and Sources						
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
Zill, D. G.	Ecuaciones diferenciales con problemas de valor en la frontera	Cengage Learning,			2018	
Zill, D. G.; Wright, W. S.	Matemáticas V. Ecuaciones Diferenciales	Cengage Learning,			2018	
Larson, R.; Edwards, B.	Cálculo 2 de varias variables	McGraw Hill		9789701071342	2009	
Larson, R.; Edwards, B.; Falvo, D.	Álgebra Lineal	Grupo Anaya Comercial		9788436820607		
Stewart, J.	Cálculo de una variable	Thomson Learning		9789706860699	2001	
Stewart, J.	Cálculo multivariable	Thomson Learning		9789706861238	2002	
Thomas, G.	Cálculo de una variable	Pearson		9702606438	2005	
Thomas, G.	Cálculo de varias variables	Pearson		9789702606444	2006	
Zill, D.	Ecuaciones diferenciales con aplicaciones de modelado	Thomson		9687529210	2007	
Larson, R., Edwards, B. H.	Calculus	Cengage Learning,		978-1337275347	2017	
Quarteroni, A., Saleri, F., Gervasio, P.	Scientific Computing with Matlab and Octave	Springer		978-3-642-45366-3	2014	
Lay	Linear Algebra and its applications	Pearson International		978-1292092232	2015	
Zill, D. G.	First course in Differential equations with modeling applications	Cengage Learning,			2018	
Larson, R.	Elementary Linear Algebra	Wadsworth Publishing Co		978-1133110873		
Larson, Ron (1941-)	Cálculo 1 : de una variable /	McGraw-Hill,		978-607-15-0273-5	2010	
Quarteroni, Alfio	Cálculo cientifico con MATLAB y Octave /	Springer-Verlag Italia,		88-470-0503-5	2006	
Stewart, James (1941-)	Multivariable calculus /	Cengage Learning,		978-1-305-26673-5	2016	
Zill, D. G.	Differential Equations with Boundary-Value Problems	Cengage Learning,			2018	

