

UNIVERSIDAD DE CASTILLA - LA MANCHA

GUÍA DOCENTE

1. General information

Course: COMPUTER ENGINEERING Type: BASIC 359 - UNDERGRAD. IN INDUSTRIAL ELECTRONICS ENGINEERING (CR) Center: 602 - E.T.S. INDUSTRIAL ENGINEERING OF C. REA				Academic year: 2022-23					
Year: 1	aaniah		Duration: First semester						
Main language: Spanish Use of additional languages:				Second language: English Friendly: N					
Web site: Bilingual: N Lecturer: MARIA GLORIA BUENO GARCIA - Group(s): 20 21 21									
	Department	Phone Email O		Email	Office hours				
	INGENIERÍA ELÉCTRICA, ELECTRÓNICA, AUTOMÁTICA Y COMUNICACIONES	Vía Teams gloria.bueno@uclm.es		gloria.bueno@uclm.es					
Lecturer: FRANCISCO	RAMOS DE LA FLOR - Group(s): 20 21								
Building/Office	Department	Phone number	Er	nail	Office hours				
	INGENIERÍA ELÉCTRICA, ELECTRÓNICA, AUTOMÁTICA Y COMUNICACIONES	Vía Team	ms francisco.ramos@uclm.es						
Lecturer: NOELIA VALLEZ ENANO - Group(s): 20 21									
Building/Office	Department	Phone number		Email	Office hours				
	INGENIERÍA ELÉCTRICA, ELECTRÓNICA, AUTOMÁTICA Y COMUNICACIONES	Vía Teams Noelia.Vallez@uclm.es		Noelia.Vallez@uclm.es					

2. Pre-Requisites

This subject does not have pre-requisites since it is a first year subject.

3. Justification in the curriculum, relation to other subjects and to the profession

It is a basic core subject associated with the specific competence described in the Annexe of order CIN/351/2009, of 9-02-2009, which establishes the conditions that must be met by study plans that lead to the acquisition of titles that qualify for the exercise of the different regulated professions of the Industrial Engineer title.

Computing, and the topics addressed in the subject, are part of the current necessary knowledge required by all engineering disciplines: basic knowledge of operating systems, database management, and mainly of structured programming (algorithms and data types).

Personal computers have evolved into an indispensable tool to all engineering and technology students and professionals. More specifically, the knowledge of programming languages and the ability to develop algorithms to solve problems are of great interest in any of the branches of industrial engineering.

The subject is specially relevant for the understanding of later years subjects such as Industrial Computing or Control. It is also needed in applications of any of the Industrial Engineering degrees such as structure design using finite elements (Mechanical Engineering), load flows calculation (Electrical Engineering), and data acquisition or control systems (Industrial Electronic and Automation Engineering).

4. Degree competences achieved in this course					
Course competences)				
Code	Description				
A07	Knowledge of Information Technology and Communication (ITC).				
A12	Knowledge of basic materials and technologies that assist the learning of new methods and theories and enable versatility to adapt to new situations.				
B03	Basic understanding of the use and programming of computers, operating systems, data bases information programs used in engineering.				
CB01	Prove that they have acquired and understood knowledge in a subject area that derives from general secondary education and is appropriate to a level based on advanced course books, and includes updated and cutting-edge aspects of their field of knowledge.				
CB02	Apply their knowledge to their job or vocation in a professional manner and show that they have the competences to construct and justify arguments and solve problems within their subject area.				
CB03	Be able to gather and process relevant information (usually within their subject area) to give opinions, including reflections on relevant social, scientific or ethical issues.				
CB04	Transmit information, ideas, problems and solutions for both specialist and non-specialist audiences.				
CB05	Have developed the necessary learning abilities to carry on studying autonomously				

6. Units / Contents

Unit 1: Introduction to computers

Unit 2: Operating Systems

Unit 3: Introduction to algorithms, programming and dataflow diagrams

Unit 4:

Unit 5:

7. Activities, Units/Modules and Methodology								
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	Description	
Class Attendance (theory) [ON- SITE]	Combination of methods	A07 A12 B03 CB01 CB02 CB03 CB04 CB05	1.12	28	N	-		
Problem solving and/or case studies [ON-SITE]	Combination of methods	CB05	0.48	12	N	-		
Class Attendance (practical) [ON- SITE]	Practical or hands-on activities	A07 A12 B03 CB01 CB02 CB03 CB04 CB05	0.6	15	N	-		
Study and Exam Preparation [OFF- SITE]	Self-study	CB02 CB03 CB05	3.6	90	N	-		
Formative Assessment [ON-SITE]	Assessment tests	CB02 CB03 CB05	0.2	5	Y	Y		
Total:			6	150				
Total credits of in-class work: 2.4				Total class time hours: 60				
	Total credits of out of class work: 3.6				Total hours of out of class work: 90			

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System						
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description			
Projects	10.00%	10.00%				
Mid-term tests	70.00%	0.00%	Mid-term exam of Part I			
Laboratory sessions	20.00%	120 0.0%	End-term exam of Part II. There will include a remedial exam of Part I			
Final test	0.00%	70.00%				
Total:	100.00%	100.00%				

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

Evaluation criteria for the final exam:

Continuous assessment:

The students who failed the mid-term exam must take a remedial exam of Part I.

To pass the subject it is compulsory:

* to obtain a 5.0 mark in mid-term exam (or in the remedial exam of Part I).

* to obtain a 5.0 mark in end-term exam (eem) or to obtain a minimum of 4.5 mark and compensate it with the computers lab mark (clm) if following criteria is met: (eem*0,6+clm*0,1)/0,7 > 5.

The remaining evaluation activities (group report, dissertation and computer lab activity) are not compulsory, but highly recommended, as they represent 20% of the final mark.

The final mark will be the weighted mean of the different marks according to previous table weights. This mark must be over 5.0 to pass the subject.

Non-continuous evaluation:

Evaluation criteria not defined

Specifications for the resit/retake exam:

It will consist of two different retake exams (one for each part of the subject). The student must attend to any Part failed in the previous session.

To pass the subject it is compulsory:

* to obtain a 5.0 mark in Part I exam

* to obtain a 5.0 mark in Part II exam (eem) or to obtain a minimum of 4.5 mark and compensate it with the computers lab mark (clm) if following criteria is met: $(eem^{0,6}+clm^{0,1})/0,7 > 5.$

The group report and dissertation marks will be extended to this session.

The Part II mark, if better, will replace the mark of the computer lab activity.

The final mark will be the weighted mean according to previous table weights. This mark must be over 5.0 to pass the subject. Specifications for the second resit / retake exam: Same conditions as for the retake exam

9. Assignments, course calendar and important dates	
Not related to the syllabus/contents	
Hours	hours
Formative Assessment [PRESENCIAL][Assessment tests]	5
Unit 1 (de 5): Introduction to computers	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Combination of methods]	5
Problem solving and/or case studies [PRESENCIAL][Combination of methods]	2
Class Attendance (practical) [PRESENCIAL][Practical or hands-on activities]	3
Study and Exam Preparation [AUTÓNOMA][Self-study]	10
Unit 2 (de 5): Operating Systems	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Combination of methods]	5
Problem solving and/or case studies [PRESENCIAL][Combination of methods]	4
Class Attendance (practical) [PRESENCIAL][Practical or hands-on activities]	3
Study and Exam Preparation [AUTÓNOMA][Self-study]	10
Unit 3 (de 5): Introduction to algorithms, programming and dataflow diagrams	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Combination of methods]	6
Problem solving and/or case studies [PRESENCIAL][Combination of methods]	2
Class Attendance (practical) [PRESENCIAL][Practical or hands-on activities]	3
Study and Exam Preparation [AUTÓNOMA][Self-study]	21
Unit 4 (de 5):	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Combination of methods]	6
Problem solving and/or case studies [PRESENCIAL][Combination of methods]	2
Class Attendance (practical) [PRESENCIAL][Practical or hands-on activities]	3
Study and Exam Preparation [AUTÓNOMA][Self-study]	24
Unit 5 (de 5):	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Combination of methods]	6
Problem solving and/or case studies [PRESENCIAL][Combination of methods]	2
Class Attendance (practical) [PRESENCIAL][Practical or hands-on activities]	3
Study and Exam Preparation [AUTÓNOMA][Self-study]	25
Global activity	
Activities	hours
Class Attendance (theory) [PRESENCIAL][Combination of methods]	28
Problem solving and/or case studies [PRESENCIAL][Combination of methods]	12
Class Attendance (practical) [PRESENCIAL][Practical or hands-on activities]	15
Study and Exam Preparation [AUTÓNOMA][Self-study]	90
Formative Assessment [PRESENCIAL][Assessment tests]	5
	Total horas: 150

10. Bibliography and Sources								
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description		
Modesto Castrillon, Antonio Carlos Domínguez, Santiago Candela, Luis Doreste, David Freire, Agustín Salgado, Sunil Kemchandani, Daniel Hernández	Fundamentos de informática y	Paraninfo		978-84-9732-846-3	2011			
Prieto Espinosa, Alberto	Introducción a la informática	McGraw-Hill, Interamericana de España		84-481-4624-7	2006			
S. J. Chapman	Essentials of MATLAB programming	Cengage Learning		978-049-529-568-6	2009			
S. J. Chapman	MATLAB programming for engineers	Thomson		978-813-150-228-0	2008			
Virgós, Fernando	Fundamentos de informática [en el marco del Espacio Europeo	McGraw-Hill		978-84-481-6747-9	2008			
Angulo Usategui, José María	Fundamentos y estructura de computadores	Thomson		84-9732-180-4	2003			
Forouzan, Behrouz A.	Introducción a la ciencia de la computación : de la manipula	Thomson		970-686-285-4	2004			
Pes, Carlos	PSEUDOCÓDIGO PARA PRINCIPIANTES: Teoría, ejemplos y ejercicios resueltos de diseño de algoritmos en pseudocódigo con PseInt			979-8447835491	2022			