

UNIVERSIDAD DE CASTILLA - LA MANCHA GUÍA DOCENTE

1. General information

 Course: TRANSPORT PHENOMENA
 Code: 310740

 Type: CORE COURSE
 ECTS credits: 6

 Degree: 2336 - MASTER DEGREE PROGRAM IN CHEMICAL ENGINEERING
 Academic year: 2021-22

 Center: 1 - FACULTY OF SCIENCE AND CHEMICAL TECHNOLOGY
 Group(s): 20

Year: 1 Duration: First semester
Main language: Spanish Second language: English

Use of additional languages:
Web site:
English Friendly: Y
Bilingual: N

Lecturer: MANUEL SALVADOR CARMONA FRANCO - Group(s): 20								
Building/Office Department Phone number Email Office hours								
ITQUIMA/Dirección	INGENIERÍA QUÍMICA	6709	manuel.cfranco@uclm.es					
Lecturer: IGNACIO GRACIA FERNANDEZ - Group(s): 20								
Building/Office	Department	Phone number	Email	Office hours				
Enrique Costa Novella	INGENIERÍA QUÍMICA	3419	ignacio.gracia@uclm.es					

2. Pre-Requisites

Not established

3. Justification in the curriculum, relation to other subjects and to the profession

Not established

4 Degree compete	nces achieved in this course
Course competence	
Code	Description
CB06	To possess and understand knowledge that provides a basis or opportunity to be original in the development and/or application of ideas, often in a research context
E01	To apply knowledge of mathematics, physics, chemistry, biology and other natural sciences, obtained through study, experience, and practice, with critical reasoning to establish economically viable solutions to technical problems.
E03	To conceptualize engineering models, apply innovative methods in problem solving and appropriate software applications, for the design, simulation, optimization and control of processes and systems.
E04	To have the ability to solve problems that are unknown, incompletely defined, and have competing specifications, considering the possible solution methods, including the most innovative ones, selecting the most appropriate one, and being able to correct the implementation, evaluating the different design solutions.
G01	To have adequate knowledge to apply the scientific method and the principles of engineering and economics, to formulate and solve complex problems in processes, equipment, facilities and services, in which matter undergoes changes in its composition, state or energy content, characteristic of the chemical industry and other related sectors including the pharmaceutical, biotechnological, materials, energy, food or environmental sectors.
G02	To conceive, project, calculate and design processes, equipment, industrial facilities and services, in the field of chemical engineering and related industrial sectors, in terms of quality, safety, economy, rational and efficient use of natural resources and environmental conservation.
G05	To know how to establish mathematical models and develop them by means of appropriate computing, as a scientific and technological basis for the design of new products, processes, systems and services, and for the optimization of others already developed.
G06	To have the capacity of analysis and synthesis for the continuous progress of products, processes, systems and services using criteria of safety, economic viability, quality and environmental management.
G07	To integrate knowledge and deal with the complexity of making judgments and decisions, based on incomplete or limited information, including reflections on the social and ethical responsibilities of professional practice
G09	To communicate and discuss proposals and conclusions in multilingual forums, specialized and non-specialized, in a clear and unambiguous way
G11	To possess the skills of autonomous learning in order to maintain and improve the competences of chemical engineering that allow the continuous development of the profession
MC1	To have acquired advanced knowledge and demonstrated an understanding of the theoretical and practical aspects and of the working methodology in the field of Chemical Engineering with a depth that reaches the forefront of knowledge
MC2	To be able, through arguments or procedures developed and supported by themselves, to apply their knowledge, understanding and problem-solving skills in complex or professional and specialized work environments that require the use of creative or innovative ideas
MC3	To have the ability to collect and interpret data and information on which to base their conclusions including, where necessary and relevant, reflection on social, scientific or ethical issues in the field of chemical engineering
MC4	To be able to deal with complex situations or those that require the development of new solutions in the academic, work or professional field of study of Chemical Engineering
MC5	To know how to communicate to all types of audiences (specialized or not) in a clear and precise way, knowledge, methodologies, ideas, problems and solutions in the field of the study of Chemical Engineering
MC6	To be able to identify their own training needs in the field of study of Chemical Engineering and work or professional environment and

to organize their own learning with a high degree of autonomy in all kinds of contexts (structured or unstructured).

5. Objectives or Learning Outcomes

Course learning outcomes

Description

To have the ability to calculate property flows and concentration profiles in different systems situations.

To have the ability to design a pipe network incorporating the elements of regulation and measurement of flow rates.

To have the ability to pose and solve conservation equations for molecular transport in situations of different complexity (including dynamic state or two-dimensional transport). Be aware that the lack of knowledge and complexity of turbulent transport force to the use of approximate calculation methods, with the introduction of transport coefficients.

To acquire skill in determining the rheological behavior of a fluid. To understand the concept of boundary layer

To acquire skills in estimating transport properties.

To know the meaning of the different terms of the expressions of the general microscopic equations of conservation of any extensive property and particularized to the transports of mass, energy and momentum

To know the importance of transport phenomena in Chemical Engineering.

6. Units / Contents

Unit 1:

Unit 1.1

Unit 1.2

Unit 1.3

Unit 1.4

Unit 2:

Unit 2.1

Unit 2.2

Unit 2.3

Unit 3:

UIIII J.

Unit 3.1

Unit 3.2

Unit 3.3

Unit 4:

Unit 4.1

Unit 4.2

Unit 4.3 Unit 4.4

Unit 4.5

7. Activities, Units/Modules and Methodology								
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	Description	
Class Attendance (theory) [ON- SITE]	Lectures	E01 E03 G06 G09	1.12	28	N	-		
Problem solving and/or case studies [ON-SITE]	Problem solving and exercises	E01 E03 E04 G06 G07 MC1 MC2 MC3	0.88	22	Υ	N		
Group tutoring sessions [ON-SITE]	Group tutoring sessions	E04 G07 G09 MC2 MC3 MC4 MC5 MC6	0.08	2	Υ	N		
Progress test [ON-SITE]	Assessment tests	CB06 E01 E03 E04 G01 G02 G06 MC2 MC3 MC4	0.32	8	Υ	Υ		
Study and Exam Preparation [OFF- SITE]	Self-study	E01 E03 G01 G02 G05 G0 If-study G07 G11 MC1 MC2 MC3 MC4 MC5 MC6		90	N	-		
Total:			6	150				
Total credits of in-class work: 2.4				Total class time hours: 60				
Total credits of out of class work: 3.6 Total hours of out of class work: 90					Total hours of out of class work: 90			

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System						
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description			
Assessment of problem solving and/or case studies	50.00%	0.00%				
Test	50.00%	100.00%				
Total:	100.00%	100.00%				

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

Not related to the syllabus/contents			
Hours	hours		
Class Attendance (theory) [PRESENCIAL][Lectures]	28		
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	22		
Group tutoring sessions [PRESENCIAL][Group tutoring sessions]	2		
Progress test [PRESENCIAL][Assessment tests]	8		
Study and Exam Preparation [AUTÓNOMA][Self-study]	90		
Global activity			
Activities	hours		
Class Attendance (theory) [PRESENCIAL][Lectures]	28		
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	22		
Group tutoring sessions [PRESENCIAL][Group tutoring sessions]	2		
Progress test [PRESENCIAL][Assessment tests]	8		
Study and Exam Preparation [AUTÓNOMA][Self-study]	90		
	Total horas: 150		

10. Bibliography and Sources						
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
Slattery, J.C., Sagis, L., Oh, E.S. Schilichting, H. and Gersten, K.	Interfacial Transport Phenomena Boundary Layer Theory	Springer Springer		978-0-387-38442-9 978-3-662-52919-5	2007 2017	
Themelis, N.J	Transport and Chemical Rate Phenomena	Gordon and Breach Publishers	Basilea	978-2884491273	1995	
Welty, J.R.; Wicks, C.E.; Wilson, R.E. and Rorrer G.L	Fundamentals of Momentum, Heat and Mass Transfer.	Wiley		978-0470128688	2008	
Costa, E.; Calleja, G.; Ovejero, G.; De Lucas, A.; Aguado, J. y Uguina, M.A	Ingeniería Química 2. Fenómenos de Transporte	Alhambra	Madrid	84-205-1021-1	1984	
Bennett, C.D. Y Myers, J.E.	Momentum, Heat and Mass Transfer	McGraw-Hill	New York	978-84-291-7047-4	1984	
Costa, E.; Calleja, G.; Ovejero, G.; De Lucas, A.; Aguado, J. y Uguina, M.A	Ingeniería Química 3. Flujo de Fluidos	Alhambra	Madrid	84-205- 1119-6	1984	
Costa, E.; Calleja, G.; Ovejero, G.; De Lucas, A.; Aguado, J. y Uguina, M.A.	Ingeniería Química 4. Transmisión de Calor	Alhambra	Madrid	84-205-1408-6	1986	
Costa, E.; Calleja, G.; Ovejero, G.; De Lucas, A.; Aguado, J. y Uguina, M.A.	Ingeniería Química 5. Transferencia de materia	Alhambra	Madrid	84-205-1704-6	1988	
Slattery, J.C	Momentum, Energy and Mass Transfer in Continua	Mc Graw-Hill	New York		1972	
Bird, R.B.; Steward, W.E. y Lighfoot, E.N.	Fenómenos de transporte	Reverté	Barcelona	84-291-7050-2	1982	
Chapman A.J.	Fundamentals of heat transfer	McMillan	New York	0-02-321600-X	1984	
Fahien, R.W.	Fundamentals of Transport Phenomena	McGraw-Hill	New York	978-0070198913	1983	
Duderstadt, J.J. y Martin W.R	Transport Theory	Wiley- Interscience Publication	New York	0-471-04492-X	1979	
Frederickson, A.G	Principles and Applications of Rheology	Prentice Hall		978-0137009633	1964	
Geankopolis, C.J.	Transport Processes and Unit Operations	Prentice Hall	New Jersey	0-13-045253-X	1993	
Kern, D.Q	Procesos de Transferencia de Calor	CECSA	Mexico	968-26-1040-0	1999	
Reid, C,R.; Prausnitz, J.M. y Poling, E.B	The Properties of Gases and Liquids	McGraw-Hill	New York	0-07-149999-7	2001	
Brodkey, R. S. Y Hersahey, H. C	Transport Phenomena. A Unified Approach	McGraw-Hill	New York	0-07-100152-2	1998	
Crank	The mathematics of Diffusion	Oxford University Press	Oxford	0-19-853344-6	1975	