Course: CARBON, OIL AND PETROCHEMICAL TECHNOLOGY Type: ELECTIVE Degree: 344 - CHEMICAL ENGINEERING Center: 1 - FACULTY OF SCIENCE AND CHEMICAL TECHNOLOGY Year: 4
Main language: Spanish Use of additional languages: Web site:
Lecturer: ANGEL PEREZ MARTINEZ - Group(s): 21
Building/Office
ECTS credits: 6

2. Pre-Requisites

Not established
3. Justification in the curriculum, relation to other subjects and to the profession

Not established

4. Degree competences achieved in this course

Course competences

Description
Knowledge and / or ability to handle chemical analysis equipment and property characterization, and the basic instruments of a chemical laboratory.
Knowledge and capacity of management and specification of the main industrial equipment in the area of knowledge of chemical engineering
Ability to perform economic evaluations and establish the economic viability of a project
Knowledge of the fundamentals and techniques of environmental analysis
Knowledge of the basic norms in matters of occupational health and safety, especially those that are applicable in the Industry and in the Chemical Laboratories
Ability to write, sign and develop projects in the field of chemical engineering that are intended, according to the knowledge acquired as established in section 5 of order CIN / 351/2009 of February 9, construction, reform, repair, conservation, demolition, manufacture, installation, assembly or operation of: structures, mechanical equipment, energy installations, electrical and electronic installations, industrial facilities and processes and manufacturing and automation processes.
Capacity for the direction, of the activities object of the engineering projects described in the competence G1
Knowledge in basic and technological subjects, which enables them to learn new methods and theories, and give them versatility to adapt to new situations.
Ability to solve problems with initiative, decision making, creativity, critical reasoning and to communicate and transmit knowledge, skills and abilities in the field of Chemical Engineering.
Knowledge for the realization of measurements, calculations, valuations, appraisals, surveys, studies, reports, work plans and other analogous works.
Ability to handle specifications, regulations and mandatory standards.
Ability to analyze and assess the social and environmental impact of technical solutions.
Proficiency in a second foreign language at level B1 of the Common European Framework of Reference for Languages
ethical commitment and professional ethics
Capacity for critical thinking and decision making
Synthesis capacity
Capacity for teamwork
Ability to analyze and solve problems
Ability to learn and work autonomously
Ability to apply theoretical knowledge to practice
Creativity and initiative
Leadership
Obtaining skills in interpersonal relationships.

Description
To manage simulators (Hysys) that facilitate the understanding of the characterization tests as well as the operation of the main processes and units of physical refining, conversion, etc.
To know the raw materials and products of petro-chemical interest and the reactions through which they transform each other.
To know the main processes and units that make up a refinery
To know the procedures for obtaining polymeric materials.
To know the properties and quality specifications of coal and oil and its derivatives.
To be able to identify the properties of the polymeric materials and the characterization techniques used for it.

6. Units / Contents

Unit 1: Coal: characterization, resources, and industrial uses.
Unit 2: Crude oil properties, composition and evaluation.
Unit 3: Refinery products: especifications and characteristics for energy and non energy uses.
Unit 4: Petroleum refining: separation processes.
Unit 5: Thermal and catalytic cracking.
Unit 6: Processes for the improvement of properties
Unit 7: Finishing processes and product blending.
Unit 8: Refinery flowscheme.
Unit 9: Petrochemistry industry. Introduction.
Unit 10: Methane and alkanes chemistry.
Unit 11: Ethylene chemistry.
Unit 12: Propylene and C4+ olefins chemistry.
Unit 13: Aromatics chemistry.
Unit 14: Polymers Technology. Introduction.
Unit 15: Thermoplastics polymers.
Unit 16: Others polymers.

7. Activities, Units/Modules and Methodology							
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	Description
Class Attendance (theory) [ONSITE]	Lectures	E26 E28 E39 G01 G02 G03 G06 G11 G14 G16 G17 G18 G20 G23	1.5	37.5	N		
Class Attendance (practical) [ONSITE]	Practical or hands-on activities	$\begin{aligned} & \text { E24 E26 E28 E32 E39 E44 } \\ & \text { G04 G05 G06 G11 G14 } \\ & \text { G16 G17 G18 G19 G20 } \\ & \text { G22 G23 G26 } \end{aligned}$	0.3	7.5	Y	N	
Workshops or seminars [ON-SITE]	Project/Problem Based Learning (PBL)	```E24 E26 E28 E32 E39 G01 G02 G03 G04 G05 G06 G11 G14 G16 G17 G18 G19 G20 G21 G22 G23 G26```	0.4	10	Y	N	
Group tutoring sessions [ON-SITE]	project-based learning	$\begin{aligned} & \text { E24 E26 E28 E32 E39 G01 } \\ & \text { G02 G03 G04 G06 G11 } \\ & \text { G14 G16 G17 G18 G19 } \\ & \text { G20 G21 G22 G23 G26 } \end{aligned}$	0.1	2.5	Y	N	
Study and Exam Preparation [OFFSITE]	Self-study	E24 E26 E28 E32 E39 E44 G01 G02 G03 G04 G05 G06 G11 G14 G16 G17 G18 G19 G20 G21 G22 G23 G26	3.6	90	N		
Final test [ON-SITE]	Assessment tests	$\begin{aligned} & \text { E24 E26 E28 E39 G03 G05 } \\ & \text { G06 G11 G14 G16 G17 } \\ & \text { G18 G20 G21 G22 G23 } \end{aligned}$	0.1	2.5		Y	
Total:			6	150			
Total credits of in-class work: 2.4			Total class time hours: 60				
Total credits of out of class work: 3.6			Total hours of out of class work: 90				

As: Assessable training activity
Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System			
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description
Theoretical papers assessment	15.00%	0.00%	
Assessment of activities done in the computer labs	10.00%	0.00%	
Assessment of problem solving and/or case studies	15.00%	0.00%	
Final test	60.00%	100.00%	
	Total:	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of

9. Assignments, course calendar and important dates	
Not related to the syllabus/contents	
Hours	
Unit 1 (de 16): Coal: characterization, resources, and industrial uses.	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	30
Class Attendance (practical) [PRESENCIALI[Practical or hands-on activities]	15
Workshops or seminars [PRESENCIAL][ProjectProblem Based Learning (PBL)]	10
Group tutoring sessions [PRESENCIAL][project-based learning]	2.5
Study and Exam Preparation [AUTÓNOMA][Self-study]	90
Final test [PRESENCIAL][Assessment tests]	2.5
Global activity	
Activities	hours
Class Attendance (practical) [PRESENCIALI[Practical or hands-on activities]	15
Workshops or seminars [PRESENCIAL][Project/Problem Based Learning (PBL)]	10
Group tutoring sessions [PRESENCIAL][project-based learning]	2.5
Study and Exam Preparation [AUTÓNOMA][Self-study]	90
Final test [PRESENCIAL][Assessment tests]	2.5
Class Attendance (theory) [PRESENCIAL][Lectures]	30
	Total horas: 150

10. Bibliography and Sources						
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
Billmeyer, Fred W.	Textbook of polymer science	John Wiley \& Sons		0-471-03196-8	1984	
Brydson, J.A.	Plastics materials	Butterworth Heinemann		0-7506-1864-7	1996	
Chauvel, A. and Lefebvre, G.	Petrochemical processes: technical and economic characteristics	Technips	Paris	2-7108-0561-8	1989	
Garrido, L.; Ibarra, L. y Marco, C.	Ciencia y tecnología de materiales poliméricos	Instituto de Ciencias y Tecnología de Polímeros (CSIC)	Madrid	84-609-0966-2	2004	
Gary, James H.	Refino de petróleo : tecnologia y economia	Reverté		84-291-7904-6	1980	
Hatch, Lewis F.	From hydrocarbons to petrochemicals	Gulf Division Company		0-87201-374-X	1982	
Meyers, R.A.	HANDBOOK of petroleum refining processes	McGraw-Hill	New York	0-07-041763-6	1986	
RAMOS CARPIO, M. A.	Ingeniería de los materiales plásticos	Díaz de Santos	Madrid	84-86251-85-0	1988	
Ramos Carpio, M. A.	Refino de petróleo, gas natural y petroquímica	Fundación Fomento Innovación Industrial	Madrid	84-605-6755-9	1997	
Ullmann's	Encyclopedia of Industrial Chemistry	Wiley-VCH		3-527-30385-5	2003	
Wauquier, J.P.	Separation processes	Technip	Paris	2-7108-0761-0	2000	
Wauquier, Jean-Pierre	El refino del petróleo : petróleo crudo, productos petrolífe	Instituto Superior de la Energía Díaz de Sant		84-7978-623-X	2004	

