

UNIVERSIDAD DE CASTILLA - LA MANCHA

GUÍA DOCENTE

1. General information

Courses F				Code: 10000				
-	REGULATION OF METABOLISM		Code: 13326					
Туре: С	CORE COURSE		ECTS credits: 6					
Degree: 3	41 - UNDERGRADUATE DEGREE	ME IN BIOCHEMISTRY A	Academic year: 2021-22					
Center: 5	01 - FACULTY OF ENVIRONMENT	ES AND BIOCHEMISTRY	Group(s): 40					
Year: 3			Duration: C2					
Main language: Spanish Second language: Spanish								
Use of additional English Friendly: Y								
Web site: Bilingual: N								
Lecturer: BLANCA MARÍA RUBIO MUÑOZ - Group(s): 40								
Building/Office	Department	Phone number	Email	Office hours				
			blanca.rubio@uclm.es					
Lecturer: ROSARIO SERRANO VARGAS - Group(s): 40								
Building/Office	Department	Phone number	Email	Office hours				
Room 28/Building 6	QUÍMICA INORG., ORG., Y BIOQ.	5484	rosario.serrano@uclm.es	monday, wednesday, friday 12-14h pm				

2. Pre-Requisites

Not established

3. Justification in the curriculum, relation to other subjects and to the profession

The subject "Metabolism and its Regulation", addresses the study of the main metabolic pathways involved in the metabolism of the main classes of Biomolecules: carbohydrates, lipids, nucleic acids and proteins, as well as the main mechanisms involved in their regulation. Its study is approached from an integrated point of view, implying metabolic regulation as main responsible for the maintenance of the homeostasis of the organism in different physiopathological situations.

The teaching of this subject is based on previous knowledge acquired in the subjects of Fundamentals of Biochemistry, 1st year of the Degree, Enzymology, 2nd year, Signaling, control and cellular homeostasis, 2nd year and Human Physiology taught in the first semester of 3rd course. Also, different concepts acquired in the course of this subject will help the better understanding of others that are taught in the same temporality, such as Clinical Biochemistry, Immunology and Molecular Biology of Systems.

From a professional point of view, the subject provides theoretical and practical knowledge of Metabolic Regulation that will be necessary for the development of some professional facets of a graduate in Biochemistry.

Course competences Code Description E01 Express themselves correctly in basic biological, physical, chemical, mathematical a E06 To know how to obtain and process, according to its properties, different animal tissu E11 To have an integrated vision of the cellular functioning of both the metabolism and the of the different cellular compartments. E13 Correct handling of different computer tools Experimentally determine the concentrations of metabolites, the kinetic and thermode	ues for metabolic study he gene expression, being able to relate the activity
E01 Express themselves correctly in basic biological, physical, chemical, mathematical a E06 To know how to obtain and process, according to its properties, different animal tissu E11 To have an integrated vision of the cellular functioning of both the metabolism and the of the different cellular compartments. E13 Correct handling of different computer tools Expression Expression of the conceptrations of metabolites, the kinetic and thermody	ues for metabolic study he gene expression, being able to relate the activity
 E06 To know how to obtain and process, according to its properties, different animal tissu E11 To have an integrated vision of the cellular functioning of both the metabolism and the of the different cellular compartments. E13 Correct handling of different computer tools Experimentally determine the concentrations of metabolites the kinetic and thermodice 	ues for metabolic study he gene expression, being able to relate the activity
E11 To have an integrated vision of the cellular functioning of both the metabolism and the of the different cellular compartments. E13 Correct handling of different computer tools Experimentally determine the concentrations of metabolites the kinetic and thermody	he gene expression, being able to relate the activity
E11 of the different cellular compartments. E13 Correct handling of different computer tools Experimentally determine the concentrations of metabolites, the kinetic and thermod	
Experimentally determine the concentrations of metabolites, the kinetic and thermod	dynamic parameters and the control coefficients of
Experimentally determine the concentrations of metabolites, the kinetic and thermod	dynamic parameters and the control coefficients of
E15 the reactions of the intermediate metabolism.	
E21 Understand the chemical and thermodynamic principles of biocatalysis and the role functioning of cells and organisms.	of enzymes and other biocatalysts in the
E22 Have an integrated view of the intercellular communication and intracellular signallin differentiation, development and function of animal and plant tissues and organs.	ng systems that regulate the proliferation,
E23 To know the components, functioning and regulation mechanisms of plant and anima species.	nal organisms, with special emphasis on the human
E32 Know how to design and carry out a study and/or project in the area of Biochemistry the results obtained and write a report containing these results.	and Molecular Biology, be able to critically analyse
G01 To possess and understand the knowledge in the area of Biochemistry and Molecula textbooks, also includes cutting-edge aspects of relevance in the discipline	ar Biology at a level that, based on advanced
G03 Be able to collect and interpret relevant data, information and results, draw conclusion scientific or ethical issues in connection with advances in Biochemistry and Molecular	
T03 A correct oral and written communication	
T05 Organizational and planning skills	
T10 Ability to self-learn and to obtain and manage bibliographic information, including Int	nternet resources

Course learning outcomes

Description

Understand the involvement of each organ/tissue in the physiological control of metabolism.

To know the different elements of metabolic control at the molecular, cellular and organismal levels and their interrelationships.

To know the experimental methods commonly used for the study of metabolism both at the cellular level, at the organ and/or tissue level and at the body level. Understand the cellular compartmentalization of the different metabolic pathways.

Correctly describe the different pathways of the intermediate metabolism and the mechanisms of control and integration of the different metabolic pathways.

To be able to predict the metabolic adaptations that will occur under different physiological and physiopathological conditions.

Acquisition of an integrated view of the control of gene expression and metabolism through the study of the mode of action of hormones, neurotransmitters, growth factors, nutrients, etc.

6. Units / Contents

Unit 1: Introduction to Metabolism. Main regulatory mechanisms.

Unit 2: Bioenergetics and oxidative metabolism

Unit 3: Functions and Metabolism of nutrients: carbohydrates, lipids and proteins

Unit 4: Metabolic tissue specialization

Unit 4.1 Anaerobic metabolism of glucose in the erythrocyte

Unit 4.2 Metabolism of tumor cells

Unit 4.3 Storage and synthesis of carbohydrates in liver and muscle

Unit 4.4 Oxidative metabolism of lipids in liver and muscle

Unit 4.5 Obtaining energy through oxidative metabolism

Unit 4.6 Synthesis of fatty acids and storage of lipids in adipose tissue

Unit 4.7 Biosynthesis and use of amino acids in the energetic metabolism

Unit 5: Regulation of glucose homeostasis and energy metabolism

Unit 6: Laboratory Sessions

7. Activities, Units/Modules and Methodology								
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	Description	
Class Attendance (theory) [ON- SITE]	Lectures		1.28	32	N	-	Theorical classes	
Class Attendance (practical) [ON- SITE]	Practical or hands-on activities	E06 E13 E15 E23 G03	0.8	20	Y	Y	Study of adaptation to fasting and re- feeding. Attendance is mandatory and not recoverable. The evaluation of practical classes will be recoverable.	
Final test [ON-SITE]	Assessment tests	E01 E13 E22 G03 T03 T05	0.08	2	Y		Practical activities	
Problem solving and/or case studies [ON-SITE]	Project/Problem Based Learning (PBL)	E01 E06 E11 E22 E23 T03	0.08	2	Y	N	Practical cases on metabolic situations. Non-recoverable activity	
Problem solving and/or case studies [ON-SITE]	Problem solving and exercises	E21 G01 G03 T10	0.08	2	Y		Bioenergetics problems.Energy needs and caloric intake. Non- recoverable activity	
Study and Exam Preparation [OFF- SITE]	Self-study	E11 E21 E22 E23 G01 T05 T10	3.6	90	N	-		
Final test [ON-SITE]	Assessment tests	E01 E21 E22 E23 G01 T03	0.08	2	Y	Y	Theorical activities	
Total			6	150				
Total credits of in-class work: 2.4				Total class time hours: 60				
Total credits of out of class work: 3.6				Total hours of out of class work: 90				

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System							
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description				
Final test	15.00%	15.00%	Laboratory sessions evaluation				
Assessment of problem solving and/or case studies	10.00%	0.00%	Workshops sessions evaluation				
Final test	75.00%	85.00%	Topics evaluation				
Total:	100.00%	100.00%					

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

Evaluation criteria for the final exam:

Continuous assessment:

It is compulsory to obtain a score>4 over 10 in the laboratory sessions (compulsory attendance + final test) to pass the course

It is mandatory to obtain a score> 4 over 10 in the final test to add all other evaluable parts (labs and seminars)

It is necessary to obtain a final mark> 5 to pass the subject

Non-continuous evaluation:

It is compulsory to obtain a score>4 over 10 in the laboratory sessions (compulsory attendance + final test) to pass the course It is mandatory to obtain a score>4 over 10 in the final test to add all other evaluable parts (labs)

It is necessary to obtain a final mark> 5 to pass the subject

Specifications for the resit/retake exam:

The marks from the laboratory sessions and seminars are maintained until the Make-up Exam.

It is compulsory to obtain a score>4 over 10 in the laboratory sessions (compulsory attendance + final test) to pass the course

It is mandatory to obtain a score> 4 over 10 in the final test to add all other evaluable parts (labs and seminars)

It is necessary to obtain a final mark> 5 to pass the subject

Specifications for the second resit / retake exam:

It is mandatory to have completed the laboratory practices. The final test will mean 100% of the evaluation It is necessary to obtain a final mark> 5 to pass the subject

9. Assignments, course calendar and important dates Not related to the syllabus/contents

Hours

hours

10. Bibliography and Sources					
Author(s)	Title/Link	Publishing house Citv	ISBN	Year	Description
John Hancock	Cell Signaling	Oxford University Press	9780199232109.	2010	
John W Baynes, Marek H Dominiczak	Bioquímica médica	Elsevier	978-84-8086-730-6	2011	
Koolman. Rohm	Bioquímica Humana	Editorial Médica Panamericana	978-84-9835-215-3	2011	
Mathews, Van Holde & Ahern	Bioquímica	Addison Wesley	978478290536	2003	
Nelson & Cox	Lehninger: Principios de Bioquímica	Omega	9788428214865	2009	
Stryer, Berg & Tymoczko,	Bioquímica	Reverte-6º edición	9788429176001	2008	