Course: ADVANCED ELECTRONIC INSTRUMENTATION Code: 56529Type: ELECTIVE					
Degree: 360 - UNDERGRAD. IN INDUSTRIAL ELECTRONICS AND AUTOMAT. ENGINEERING (TO) Academic year: 2021-22					
Center: 303 - E.DE INGENIERÍA INDUSTRIAL Y AEROESPOACIAL DE TOLEDO Group(s): 40 Year: Sin asignar Duration: First semester					
Main language: Spanish Second language: English					
Use of additional languages:					
Web site:					gual: N
Lecturer: JOSE MANUEL GOMEZ GARCIA - Group(s): 40					
Building/Office Dep	tment	Phone numbe	Ema		Office hours
1.56-Edificio ING Sabatini AUT	NIERÍA ELÉCTRICA, ELECTRÓNICA, MÁTICA Y COMUNICACIONES	Via Teams	jose	anuel.gome	
Lecturer: DAVID RODRIGUEZ ROSA - Group(s): 40					
Building/Office	Department		Phone number	Email	Office hours
Edificio Sabatini / Laboratorio Mecatrónica	INGENIERÍA ELÉCTRICA, ELECTRÓ AUTOMÁTICA Y COMUNICACIONES	NICA,	96815	David.RRos	

2. Pre-Requisites

Not established

3. Justification in the curriculum, relation to other subjects and to the profession

Not established

4. Degree competences achieved in this course

Course competences

Code

Description

To know how to apply knowledge to work or vocation in a professional manner and possess the competences that are usually demonstrated by the formulation and defence of arguments and the resolution of problems in the field of study.
To be able to transmit information, ideas, problems and solutions to a specialized audience.
To have developed the learning skills necessary to undertake subsequent studies with a greater degree of autonomy.
Command of a second foreign language at B1 level of the Common European Framework of Reference for Languages.
Knowledge of Information Technology and Communication (ITC).
Appropriate level of oral and written communication.
Ethical and professional commitment.
Knowledge of basic materials and technologies that assist the learning of new methods and theories and enable versatility to adapt to new situations.

Ability to take the initiative to solve problems, take decisions, creativity, critical reasoning and ability to communicate and transmit knowledge, skills and abilities in Industrial Engineering and Automation.
To have organization and planning skills used in businesses and other institutions and organizations.
Ability to work in a multilingual and multidisciplinary environment.
Design and construction of electronic instruments.

5. Objectives or Learning Outcomes

Course learning outcomes

Description
Supplement basic and specific training oriented at a particular specialization of an open, multidisciplinary nature with a direct application to the professional field Acquire knowledge and skills in the use of information tools that enable the student to better use the knowledge acquired. Widen these improvements through new applications autonomously.
Knowledge of the tools and techniques of design and manufacture of electronic instruments

Additional outcomes

Unit 1:
Unit 1.1
Unit 1.2
Unit 1.3
Unit 1.4

Unit 2.1
Unit 2.2
Unit 2.3
Unit 3:
Unit 3.1
Unit 3.2
Unit 3.3
Unit 3.4
Unit 3.5
Unit 3.6
Unit 3.7
Unit 3.8
Unit 4:
Unit 4.1
Unit 4.2
Unit 4.3
Unit 4.4
Unit 4.5
Unit 4.6 Unit 5:

Unit 5.1
Unit 5.2
Unit 5.3

7. Activities, Units/Modules and Methodology						
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As Com	Description
Class Attendance (theory) [ONSITE]	Lectures	H5	0.9	22.5	N	
Problem solving and/or case studies [ON-SITE]	Project/Problem Based Learning (PBL)	A02 A04 A05 A06 A07 A08 A09 A12 A13 A18 A19 H5	0.3	7.5	N	
Laboratory practice or sessions [ON-SITE]	project-based learning	A02 A04 A05 A06 A07 A08 A09 A12 A13 A18 A19 H5	0.3	7.5	Y Y	
Progress test [ON-SITE]	Assessment tests	A09 A13 H5	0.3	7.5	$Y \quad Y$	
Individual tutoring sessions [ONSITE]	Combination of methods	A09 A12 H5	0.6	15	N	
Study and Exam Preparation [OFFSITE]	Self-study	A07 A12 H5	3.6	90	N	
Total:			6	150		
Total credits of in-class work: 2.4			Total class time hours: 60			
Total credits of out of class work: 3.6			Total hours of out of class work: 90			

As: Assessable training activity
Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System			
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description
Laboratory sessions	0.00%	30.00%	
Final test	0.00%	40.00%	
Self Evaluation and Co-evaluation	0.00%	30.00%	
	Total:	$\mathbf{0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100\% of the competences).

9. Assignments, course calendar and important dates	
Not related to the syllabus/contents	hours
Hours	7.5
Problem solving and/or case studies [PRESENCIAL][Project/Problem Based Learning (PBL)]	7.5
Laboratory practice or sessions [PRESENCIAL][project-based learning]	7.5
Progress test [PRESENCIAL][Assessment tests]	15
Individual tutoring sessions [PRESENCIAL][Combination of methods]	90
Study and Exam Preparation [AUTÓNOMA][Self-study]	Hours
Unit $\mathbf{1}$ (de 5):	4.5
Activities	Class Attendance (theory) [PRESENCIAL][Lectures]
Unit 2 (de 5):	

Activities	Hours4.5
Class Attendance (theory) [PRESENCIAL][Lectures]	
Unit 3 (de 5):	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	4.5
Unit 4 (de 5):	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	4.5
Unit 5 (de 5):	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	4.5
Global activity	
Activities	hours
Problem solving and/or case studies [PRESENCIAL][Project/Problem Based Learning (PBL)]	7.5
Laboratory practice or sessions [PRESENCIAL][project-based learning]	7.5
Class Attendance (theory) [PRESENCIAL][Lectures]	22.5
Progress test [PRESENCIAL][Assessment tests]	7.5
Individual tutoring sessions [PRESENCIAL][Combination of methods]	15
Study and Exam Preparation [AUTÓNOMA][Self-study]	90
	Total horas: 150

10. Bibliography and Sources						
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
Antoni, Manuel	INSTRUMENTACIÓN VIRTUAL. ADQUISICIÓN, PROCESADO Y ANÁLISIS DE SEÑAL.	$\begin{aligned} & \text { Ediciones UPC, } \\ & \text { S.L. } 2004 \end{aligned}$		8498801591,97884988	2004	Libro de referencia de la asignatura
E. Soria	TRATAMIENTO DIGITAL DE SEÑALES. Problemas y ejercicios resueltos	Prentice Hall		8420535591	2003	Problemas resueltos con MatLab
JOSÉ RAFAEL LAJARA VIZCAÍNO	LAB VIEW ENTORNO DE PROGRAMACIÓN. LABVIEW 8.20	Marcombo		9788426714268	2012	Guía de programación y ejemplos prácticos

