

UNIVERSIDAD DE CASTILLA - LA MANCHA **GUÍA DOCENTE**

Code: 57739

ECTS credits: 6

Academic year: 2021-22

Group(s): 21

Duration: C2

. General information

Course: RENEWABLE ENERGY AND ENERGY ASSESSMENT OF CHEMICAL

Type: ELECTIVE

Degree: 344 - CHEMICAL ENGINEERING

Center: 1 - FACULTY OF SCIENCE AND CHEMICAL TECHNOLOGY Year: 4

Main language: Spanish Second language:

Use of additional English Friendly: Y languages:

Bilingual: N Web site

Web Site.	Billigual. N							
Lecturer: ANA MARIA BORREGUERO SIMON - Group(s): 21								
Building/Office	Department	Phone number	Email		Office hours			
Enrique Costa Novella/Despacho 12	INGENIERÍA QUÍMICA	6353	anam	naria.borreguero@uclm.es				
Lecturer: ANTONIO DE LUCAS CONSUEGRA - Group(s): 21								
Building/Office	Department	Phone numbe	r	Email	Office hours			
Enrique Costa Novella/Despacho 7	INGENIERÍA QUÍMICA	+3492629521	7	antonio.lconsuegra@uclm.es				

2. Pre-Requisites

Not established

3. Justification in the curriculum, relation to other subjects and to the profession

This subject is taught the second semester of the fourth year of the Degree in Chemical Engineering. At this moment the student knows in depth the most relevant operations and processes of the chemical industry and it is now intended that he can analyze them and optimize them from the energy point of view. Likewise, it is intended to deepen the knowledge of renewable energy sources, to be able to provide different solutions to improve the energy efficiency of industrial

4. Degree competences achieved in this course

Course	competences
^ .	

Code Description

Apply their knowledge to their job or vocation in a professional manner and show that they have the competences to construct and **CB02**

justify arguments and solve problems within their subject area.

Be able to gather and process relevant information (usually within their subject area) to give opinions, including reflections on relevant **CB03**

social, scientific or ethical issues.

CB05 Have developed the necessary learning abilities to carry on studying autonomously

Knowledge and capacity of management and specification of the main industrial equipment in the area of knowledge of chemical E26

Knowledge about the mode of operation and capacity for the design of the main unit operations used in the pharmaceutical and food E42

industries, in particular mechanical separation operations and membrane processes

Knowledge, understanding and ability to apply the necessary legislation in the exercise of the profession of Industrial Technical G10

G12 Knowledge of Information and Communication Technologies (ICT).

G13 Proper oral and written communication G14 ethical commitment and professional ethics G16 Capacity for critical thinking and decision making

G17 Synthesis capacity G18 Capacity for teamwork

G19 Ability to analyze and solve problems G20 Ability to learn and work autonomously

G21 Ability to apply theoretical knowledge to practice

G22 Creativity and initiative

G23 Leadership

G24 Recognition of diversity, multiculturalism and gender equality

5. Objectives or Learning Outcomes

Course learning outcomes

Description

To understand the development of energies and the relevance they have in the conservation of the environment.

To know the different technological solutions to improve the efficiency of industrial processes.

To have applied knowledge on nuclear energy, renewable energy sources and capacity for energy assessment and optimization of chemical processes.

To analyze the influence of ecological, social, political and ethical factors on the development of each of the energy sources.

To know the integration of processes and operations.

To know the possibilities of energy savings and economic benefits that involve processes such as cogeneration.

6. Units / Contents

Unit 1: Energy

Unit 2: Thermoelectric plants

Unit 3: Nuclear energy

Unit 4: Renewable energy

Unit 5: Hydroelectric plant

Unit 6: Small size hydroelectric plants

Unit 7: Solar energy

Unit 8: Wind energy

Unit 9: Biomass energy

Unit 10: The electricity

Unit 11: The spanish energy renewable plan

Unit 12: Cogeneration systems

Unit 13: Eficiency of chemical process

7. Activities, Units/Modules and Methodology							
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	Description
Class Attendance (theory) [ON-SITE]	Lectures	CB02 CB03 CB05 E26 E42 G10 G12 G16 G17 G18 G20 G21 G22 G23	1.5	37.5	N	-	
Workshops or seminars [ON-SITE]	project-based learning	CB02 CB03 CB05 E26 E42 G10 G13 G16 G17 G20 G21 G22 G23 G24	0.5	12.5	Υ	Y	
Group tutoring sessions [ON-SITE]	Project/Problem Based Learning (PBL)	CB02 CB03 CB05 E42 G10 G12 G13 G16 G17 G18 G20 G21 G22 G23	0.3	7.5	N	1	
Final test [ON-SITE]	Assessment tests	CB02 CB03 CB05 E42 G10 G12 G14 G16 G17 G18 G20 G21 G22 G23	0.1	2.5	Υ	Y	
Study and Exam Preparation [OFF-SITE]	Self-study	CB02 CB03 CB05 E42 G10 G12 G13 G14 G16 G17 G18 G20 G21 G22 G23	3.6	90	Ν	1	
Total:							
Total credits of in-class work: 2.4							Total class time hours: 60
Total credits of out of class work: 3.6							Total hours of out of class work: 90

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System						
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description			
Final test	0.00%	100.00%				
Progress Tests	70.00%	0.00%				
Assessment of problem solving and/or case studies	30.00%	0.00%				
Total:	100.00%	100.00%				

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

Evaluation criteria for the final exam:

Continuous assessment:

To pass the subject a minimum mark of 4/10 in each part should be obtained by the student and an average mark above 5/10.

Non-continuous evaluation:

Evaluation criteria not defined

Specifications for the resit/retake exam:

To pass the subject a minimum mark of 5/10 should be obtained in a final exam

Specifications for the second resit / retake exam:

To pass the subject a minimum mark of 5/10 should be obtained in a final exam

9. Assignments, course calendar and important dates						
Not related to the syllabus/contents						
Hours	hours					
Class Attendance (theory) [PRESENCIAL][Lectures]	37.5					
Workshops or seminars [PRESENCIAL][project-based learning]	12.5					
Group tutoring sessions [PRESENCIAL][Project/Problem Based Learning (PBL)]	7.5					

Final test [PRESENCIAL][Assessment tests]	2.5
Study and Exam Preparation [AUTÓNOMA][Self-study]	90
Global activity	
Activities	hours
Workshops or seminars [PRESENCIAL][project-based learning]	12.5
Final test [PRESENCIAL][Assessment tests]	2.5
Class Attendance (theory) [PRESENCIAL][Lectures]	37.5
Group tutoring sessions [PRESENCIAL][Project/Problem Based Learning (PBL)]	7.5
Study and Exam Preparation [AUTÓNOMA][Self-study]	90
	Total horas: 150

10. Bibliography and Sources			_			
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
Hoeneisen, B.	La situación energética mundial (con números)	Universidad S. Francisco de Quito	Quito		2006	
IDAE	Energía de la Biomasa	Biblioteca Cinco Días	Madrid	84-8036-414-9	1996	
IDAE	Plan de Acción Nacional de Energías Renovables de España (Paner) 2011-2020		Madrid		2010	
Jarabo, F. y Otros	El libro de las Energías Renovables	SAPT	Madrid	84-8691301-2	1988	
Lucas, A. y Ramos, M.	Análisis del Binomio Energía- Medioambiente	Ediciones de la Universidad de Castilla-La Mancha	Cuenca	84-89958-85-8	1999	
Madrid, A.	Guía Completa de las Energías Renovables	AMV EDICIONES		978-84-96709-77-5	2012	
Orille, A.L.	Centrales Eléctricas I.	UPC	Barcelona		1993	
Ortega, M.	Energías Renovables	Paraninfo	Madrid	84-283-2582-0	1999	
Ramírez, J.	Centrales Eléctricas. Enciclopedia CEAC de la electricidad	CEAC	Barcelona	84-329-6006-3	1995	
Seider W.D., Seader J., Lewin D.	Process Design Principles	John Wiley		0-471-24312-4	1999	
Azcarate, B. y Mingoranze, A.	Energías e Impacto Ambiental	Equipo Sirius	Madrid	978-84-92509-54-6	2007	
Castro M. y Sánchez C.	Energía Hidráulica	PROGENSA			1997	