

UNIVERSIDAD DE CASTILLA - LA MANCHA

GUÍA DOCENTE

1. General information

Cours	E COMPONENTS AND CIRCUITS		Code: 59604				
Тур	e: BASIC		ECTS credits: 6				
Degre	e: 385 - DEGREE IN TELECOMMUNICA	TI TECHNOLOG	Y ENGINEERING Acad	ERING Academic year: 2020-21			
Cente	er: 308 - SCHOOL POLYTECHNIC OF C		Group(s): 30				
Yea	ar: 1		Duration: First semester				
Main language: Spanish			Second language:				
Use of addition language			English Friendly: Y				
Web site:			Bilingual: N				
Lecturer: RAQUEL	CERVIGON ABAD - Group(s): 30						
Building/Office	Department	Phone number	Email	I Office hours			
E. Politécnica Cuenca (0.05)	INGENIERÍA ELÉCTRICA, ELECTRÓNICA, AUTOMÁTICA Y COMUNICACIONES	926054049	raquel.cervigon@uclm.es	This information will be published at the beginnin of the semester.			

2. Pre-Requisites

There are no specified enrollment restrictions with other subjects of the curriculum. We recommended study Mathematics Fundamentals I and II and Fundamentals of Physics subjects.

In particular, it is necessary to master the contents related to trigonometry, algebra, complex numbers, calculus, electric and magnetic fields, etc.

3. Justification in the curriculum, relation to other subjects and to the profession

This subject is the first one that develops the subject of Electronics, one of the professional branches of Telecommunication Engineering. It establishes the fundamentals of circuit analysis and provides the basis for understanding how electronic and electrical circuits work, as well as the operating principles of the passive components found in them.

This subject is essential to study the rest of subjects belonging to the subjects of Fundamentals of Electronics and Electronics and for the optional subjects: "Electronic Technology", "Audiovisual Equipment in Electromedicine" and "Sensors and Wireless Sensor Networks".

4. Degree competences achieved in this course						
Course competences						
Code	Description					
	Understanding and mastering the basic concepts of linear systems and related functions and transformations, electrical circuit theory,					
E04	electronic circuits, physical principle of semiconductors and logic families, electronic and photonic devices, materials technology and					
	their application for solving engineering related problems.					
G02	Correct, oral and written, communication skills.					
G06	Knowledge of basic subjects and technologies, enabling students to learn new methods and technologies, as well as providing great					
	versatility to adapt to new situations					
G12	The ability to work in a multidisciplinary group and in a multilingual environment and to communicate, both in writing and orally,					
0.12	knowledge, procedures, results and ideas related to telecommunications and electronics					
G13	The ability to look for and understand information, wether technical or commercial in different sources, to relate and structure it to					
	integrate ideas and knowledge. Analysis, synthesis and implementation of ideas and knowledge.					

5. Objectives or Learning Outcomes

Course learning outcomes

Description

Problem solving by applying the fundamental theorems.

Identification of components, typical parameters and electrical behaviors in electronic systems.

Simulation of electrical behaviors through computer packages as an approximation to the real operating model.

Correct use of oral and written expression to convey ideas, technologies, results, etc.

Use of ICT to achieve the specific objectives set in the subject.

Design of simple electronic circuits.

Obtaining relevant information of electronic devices through the manufacturer data sheets.

Identification of the components of a basic electrical circuit: independent and dependent sources on voltage and current, resistive elements (fixed and variable resistors) and energy storage elements (capacitors, coils and transformers).

Choice of the most suitable strategy to solve a certain circuit.

Understanding the use of basic electronic instrumentation to check the performance of different devices.

Experimental verification of the basic electronic components behavior, as well as power or energy calculation in these components.

Analysis of linear circuits from systematic methods (knots, meshes, superposition, transformation of sources) derived from the Kirchhoff's laws.

Comprehension of technical documentation and mastery of specific vocabulary.

6. Units / Contents

Unit 1: Foundations. Elements of the circuits

Unit 1.1 Basic and fundamental concepts of circuits.

Unit 1.2 Elements of the circuits.

Unit 1.3 Identification of Electronic Components.

Unit 2: Circuit analysis methods

Unit 2.1 Fundamental methods of circuit analysis

Unit 2.2 Measurements of voltages and currents in direct current

Unit 3: Network Theorems in Electrical Engineering

Unit 3.1 Circuits Theorems

Unit 3.2 Practice 3: Theorems of Electrical Circuits

Unit 4: Sinusoidal Steady & State Analysis

Unit 4.1 Alternating Current Circuits Analysis

Unit 4.2 . Practice 3: Alternating Current Analysis

Unit 4.3

Unit 5: Circuit Analysis Techniques in the Frequency Domain

Unit 5.1 Frequency response. Passive filters.

Unit 5.2 Practice 5: Passive Filters

Unit 5.3 Practice 6: Analysis of Resonant Circuits

Unit 5.4

7. Activities, Units/Modules and M	Nethodology							
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	Description	
Class Attendance (theory) [ON- SITE]	Lectures	E04 G02 G06	0.99	24.75	N	-		
Problem solving and/or case studies [ON-SITE]	Problem solving and exercises	E04	0.37	9.25	N	-		
Laboratory practice or sessions [ON-SITE]	Practical or hands-on activities	E04 G02 G06 G12 G13	0.76	19	N	-		
Practicum and practical activities report writing or preparation [OFF- SITE]	Group Work	E04 G02 G06 G12 G13	0.8	20	Y	Y		
Other on-site activities [ON-SITE]	Assessment tests	E04 G02 G06 G12 G13	0.14	3.5	Y	Y		
On-line Activities [OFF-SITE]	Assessment tests	E04 G02 G06 G12 G13	0.2	5	Y	N		
Study and Exam Preparation [OFF-SITE]	Self-study	E04 G02 G06 G12 G13	2.6	65	N	-		
Project or Topic Presentations [ON- SITE]	Problem solving and exercises	E04 G02 G06 G12 G13	0.1	2.5	Y	N		
Individual tutoring sessions [ON- SITE]	Self-study	E04 G02 G06 G12 G13	0.04	1	N	-		
Total:								
Total credits of in-class work: 2.4				Total class time hours: 60				
	Total credits of out of class work: 3.6				Total hours of out of class work: 90			

As: Assessable training activity

Com: Training activity of compulsory overcoming (It will be essential to overcome both continuous and non-continuous assessment).

8. Evaluation criteria and Grading System						
Evaluation System	Continuous assessment	Non- continuous evaluation*	Description			
Laboratory sessions	40.00%	40.00%	Presentation of works or topics.			
Test	50.00%	60.00%	Evaluation tests.			
Assessment of problem solving and/or case studies	5.00%	0.00%				
Progress Tests	5.00%	0.00%				
Total:	100.00%	100.00%				

According to art. 4 of the UCLM Student Evaluation Regulations, it must be provided to students who cannot regularly attend face-to-face training activities the passing of the subject, having the right (art. 12.2) to be globally graded, in 2 annual calls per subject, an ordinary and an extraordinary one (evaluating 100% of the competences).

Evaluation criteria for the final exam:

Continuous assessment:

All proposed laboratory practices will have to be submitted. No minimum grade will be required in any practice, but the average grade of all of them will have to be higher than 4 points (out of 10), as well as a minimum grade of the theory test must be 4 points (out of 10). The course will be passed when the final grade is equal or superior to 5 points (out of 10).

The student who passes the laboratory practices will keep the grade during the following course, unless, voluntarily, he decides to repeat it. In case of not passing the course in the next course, the student will have to do the laboratory practices again.

Non-continuous evaluation:

Those students who, for justifiable reasons, cannot attend class continuously must indicate this to the lecturer at the beginning of the semester and may carry out the activities at a time agreed with the teacher and present them on the date indicated.

All proposed laboratory practices must be submitted. No minimum grade will be required for any practice, but the average grade of all of them will have to be higher than 4 points (out of 10).

Specifications for the resit/retake exam:

- The theory exam will be held on the date set by the head of studies and will have a weight of 60% in the final grade.

- The laboratory practices will be recovered through the realization of a single final practice that will have a weight of 20% in the final note.

- The laboratory exam will be carried out on the date indicated by the head of studies and will have a weight of 20% in the final grade.

In order to pass the course, students will have to satisfy the following three conditions:

- They must submit the proposed practice and take the laboratory exam. In each of these two activities a minimum mark of 4 points (out of 10) will be required.

- A score higher than 4 (out of 10) will be required in the theory exam.

- An average mark of more than 5 (out of 10) is required for all assessment activities.

If in this call the subject is not passed, the laboratory mark (if it is higher than 4) will be maintained only during the following course, unless the student voluntarily decides to take it again.

Specifications for the second resit / retake exam:

If the student has passed the lab in the immediately preceding course, he/she will only have to take the theory exam. If not, the student will have to take two exams, one of theory and another of laboratory, on the date fixed by the sub-direction of studies. In both cases, the theory exam will have a weight of 60% and the laboratory exam of 40%. In order to pass each part, at least a score of 4 (out of 10) will be required, with a final score of more than 5 (out of 10) being necessary to pass.

9. Assignments, course calendar and important dates	
Not related to the syllabus/contents	
Hours	hours
Practicum and practical activities report writing or preparation [AUTÓNOMA][Group Work]	20
Other on-site activities [PRESENCIAL][Assessment tests]	3.5
On-line Activities [AUTÓNOMA][Assessment tests]	5
Study and Exam Preparation [AUTÓNOMA][Self-study]	5 65
Project or Topic Presentations [PRESENCIAL][Problem solving and exercises]	65 2.5
Individual tutoring sessions [PRESENCIAL][FIGUEIII Solving and exercises]	2.5
	l
Unit 1 (de 5): Foundations. Elements of the circuits	
	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	5.5
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	2
Laboratory practice or sessions [PRESENCIAL][Practical or hands-on activities]	3
Unit 2 (de 5): Circuit analysis methods	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	4.5
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	1.5
Laboratory practice or sessions [PRESENCIAL][Practical or hands-on activities]	3
Unit 3 (de 5): Network Theorems in Electrical Engineering	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	4.75
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	2.25
Laboratory practice or sessions [PRESENCIAL][Practical or hands-on activities]	3
Unit 4 (de 5): Sinusoidal Steady & State Analysis	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	6.25
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	2.25
Laboratory practice or sessions [PRESENCIAL][Practical or hands-on activities]	4
Unit 5 (de 5): Circuit Analysis Techniques in the Frequency Domain	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	3.75
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	1.25
Laboratory practice or sessions [PRESENCIAL][Practical or hands-on activities]	6
Global activity	
Activities	hours
Laboratory practice or sessions [PRESENCIAL][Practical or hands-on activities]	19
Other on-site activities [PRESENCIAL][Assessment tests]	3.5
Study and Exam Preparation [AUTÓNOMA][Self-study]	65
Class Attendance (theory) [PRESENCIAL][Lectures]	24.75
Problem solving and/or case studies [PRESENCIAL][Problem solving and exercises]	9.25
Practicum and practical activities report writing or preparation [AUTÓNOMA][Group Work]	20
On-line Activities [AUTÓNOMA][Assessment tests]	5
Individual tutoring sessions [PRESENCIAL][Self-study]	1
Project or Topic Presentations [PRESENCIAL][Problem solving and exercises]	2.5
	Total horas: 150

10. Bibliography and Sources								
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description		
Alexander, Charles K.	Fundamentos de circuitos eléctricos	McGraw-Hill		978-970-10-5606-6	2006			
Carlson, A. Bruce	Teoría de circuitos : ingeniería, conceptos y análisis de ci	Thomson		978-84-9732-066-5	2004			
Cervigón Raquel & Sánchez César	Electronic Components and Circuits Lab	Ediciones Universidad de Castilla-La Mancha		978-84-6957-355-6	2013			
Dorf, Richard C.	Introduction to electric circuits	John Wiley & Sons		0-471-38689-8	2006			
Hayt, William H., Jr.	Análisis de circuitos en ingeniería	McGraw-Hill		978-970-10-6107-7	2007			
López Ferreras, Francisco	Análisis de circuitos lineales	Ciencia 3		84-86204-63-1 (T.II)	1994			
Nilsson, James W. & Riedel Susan A.	Circuitos electricos	Pearson/ Prentice Hall		84-205-4458-2	2012			
Sánchez Barrios, Paulino	Teoría de circuitos : problemas y pruebas objetivas orientados al aprendizaje	Pearson / Prentice Hall		978-84-8322-387-1	2007			