

UNIVERSIDAD DE CASTILLA - LA MANCHA

GUÍA DOCENTE

1. General information

Course: N	UMERICAL ANALYSIS OF PD	E AND APPRO	DXIM	ATION	Code: 310934
Type: El	LECTIVE			E	CTS credits: 6
Degree: 23	351 - MASTER DEGREE PRO ATHEMATICS-FISYMAT	GRAMME IN P	HYSI	ICS AND Aca	demic year: 2019-20
Center: 60	2 - E.T.S. INDUSTRIAL ENGI	NEERING OF (C. RE	AL	Group(s): 20
Year: 1					Duration: First semester
Main language: Sp	banish			Secon	d language: English
Use of additional languages:				Engli	sh Friendly: Y
Web site:					Bilingual: N
Lecturer: DAMIAN CAS	STAÑO TORRIJOS - Group(s)	: 20			
Building/Office	Department	Phone number	r Em	ail	Office hours
Edificio Sabatini / 1.53	MATEMÁTICAS	926051463	Da	mian.Castano@uclm.es	Disponible en https://intranet.eii-to.uclm.es/tutorias
Lecturer: HENAR HER	RERO SANZ - Group(s): 20				
Building/Office	Department	Phone num	ber	Email	Office hours
Margarita Salas/341	MATEMÁTICAS	926295412	2	henar.herrero@uclm.es	M Mi 16:30-18:00
Lecturer: MARIA CRUZ	Z NAVARRO LERIDA - Group	(s): 20			
Building/Office	Department	Phone number	Emai	I	Office hours
Margarita Salas/326	MATEMÁTICAS	3469	maria	acruz navarro@uclm es	L X V 13:00H-14:00H

2. Pre-Requisites

Calculus, algebra, differential equations and functional analysis.

3. Justification in the curriculum, relation to other subjects and to the profession

Partial differential equations are the main tool for modeling in science and technology. Only a few of these equations have an analytical solution. For this reason, numerical resolution is essential for scientific progress. To acquire knowledge on numerical analysis is relevant in an Applied Mathematics Master of Science.

4. Degree competence	es achieved in this course
Course competences	
Code	Description
CB06	Possess and understand knowledge that provides a basis or opportunity to be original in the development and / or application of ideas, often in a research context.
CB07	Apply the achieved knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to the area of study
CB08	Be able to integrate knowledge and face the complexity of making judgments based on information that, being incomplete or limited, includes reflections on social and ethical responsibilities linked to the application of knowledge and judgments
CB09	Know how to communicate the conclusions and their supported knowledge and ultimate reasons to specialized and non-specialized audiences in a clear and unambiguous way
CB10	Have the learning skills which allow to continue studying in a self-directed or autonomous way
CE01	Solve physical and mathematical problems, planning their solutions based on the available tools and time and resource constraints
CE02	Develop the ability to decide the appropriate techniques to solve a specific problem with special emphasis on those problems associated with the Modeling in Science and Engineering, Astrophysics, Physics, and Mathematics
CE05	Know how to obtain and interpret physical and/or mathematical data that can be applied in other branches of knowledge
CE07	Ability to understand and apply advanced knowledge of mathematics and numerical or computational methods to problems of biology, physics and astrophysics, as well as to build and develop mathematical models in science, biology and engineering
CE08	Ability to model, interpret and predict from experimental observations and numerical data
CG03	Present publicly the research results or technical reports, to communicate the conclusions to a specialized court, interested persons or organizations, and discuss with their members any aspect related to them
CG04	Know how to communicate with the academic and scientific community as a whole, with the company and with society in general about Physics and/or Mathematics and its academic, productive or social implications
CT03	Develop critical reasoning and the ability to criticize and self-criticize
CT05	Autonomous learning and responsibility (analysis, synthesis, initiative and teamwork)

5. Objectives or Learning Outcomes

Course learning outcomes

Description

Gain the ability to solve a specific problem as a team: from the choice of an appropriate method to the oral and written presentation of the results obtained after its implementation

Learn to use some tools of Basic Analysis and Functional Analysis to carry out the numerical analysis of a method

Know some software tools that allow to completely solve a problem in the computer, which entails know how to program, generate a computational mesh, apply the appropriate calculus module and visualize the numerical solution. Practical problem solving.

Understand the theoretic design of finite element, finite difference, finite and spectral volume methods, from known analytic techniques (variational formulations, Taylor developments, integration formulas by parts).

Understand the specific characteristics of the elliptic, parabolic and hyperbolic equations which be solved by numerical methods Know and understand the basic concepts of consistency, stability and convergence of a numerical scheme in this context, as well as their interrelation Interpretation of the obtained numerical solution and critical judgment of its quality. Relation with the applied science referred to

6. Units / Contents

Unit 1: Finite Differences

- Unit 1.1 Boundary value problems
- Unit 1.2 Parabolic evolution problems
- Unit 1.3 Error analysis

Unit 1.4 Practice exercises

Unit 2: Spectral Methods

- Unit 2.1 Fourier approximation
- Unit 2.2 Orthogonal polynomial approximation
- Unit 2.3 Practice exercises

Unit 3: Finite Elements

- Unit 3.1 Formulation and error analysis
- Unit 3.2 Effective implementation
- Unit 3.3 Practice exercises

Unit 4: Finte Volumes and Finite Differences

Unit 4.1 Finite Differences for hyperbolic evolution problems

- Unit 4.2 Formulation and error analysis
- Unit 4.3 Effective implementation
- Unit 4.4 Practice exercises

Unit 5: Courses and seminars

7. Activities, Units/Modules and Methodology

,								
Training Activity	Methodology	Related Competences (only degrees before RD 822/2021)	ECTS	Hours	As	Com	R	Description
Class Attendance (theory) [ON- SITE]	Lectures		1.5	37.5	Y	N	N	
Computer room practice [ON-SITE]	Problem solving and exercises		0.7	17.5	Y	Y	Ν	
Individual tutoring sessions [ON- SITE]			0.2	5	Y	N	Y	
Writing of reports or projects [OFF- SITE]	Self-study		3.6	90	Y	Y	Y	
Total:				150				
Total credits of in-class work: 2.4								Total class time hours: 60
Total credits of out of class work: 3.6							То	tal hours of out of class work: 90
A A 1.1 1 1.1 1.1								

As: Assessable training activity

Com: Training activity of compulsory overcoming

R: Rescheduling training activity

8. Evaluation criteria and Grading System							
	Grading System						
Evaluation System	Face-to-Face	Self-Study Student	Description				
Assessment of active participation	20.00%	10.00%	Active participation in solving problems				
Assessment of activities done in the computer labs	30.00%	20.00%	Resolution of practice exercises in the computer lab				
Practicum and practical activities reports assessment	50.00%	70.00%	Delivery of proposed works				
Total:	100.00%	100.00%					

Evaluation criteria for the final exam:

Assessment of active participation, work in the computer lab, and autonomous work

9. Assignments, course calendar and important dates						
Not related to the syllabus/contents						
Hours	hours					
Unit 1 (de 5): Finite Differences						
Activities	Hours					
Class Attendance (theory) [PRESENCIAL][Lectures]	8					
Computer room practice [PRESENCIAL][Problem solving and exercises]	4					
Individual tutoring sessions [PRESENCIAL][]	1					
Writing of reports or projects [AUTÓNOMA][Self-study]	20					
Unit 2 (de 5): Spectral Methods						

Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	8
Computer room practice [PRESENCIAL][Problem solving and exercises]	4
Individual tutoring sessions [PRESENCIAL][]	1
Writing of reports or projects [AUTÓNOMA][Self-study]	20
Unit 3 (de 5): Finite Elements	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	8
Computer room practice [PRESENCIAL][Problem solving and exercises]	4
Individual tutoring sessions [PRESENCIAL]]	1
Writing of reports or projects [AUTÓNOMA][Self-study]	20
Unit 4 (de 5): Finte Volumes and Finite Differences	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	8
Computer room practice [PRESENCIAL][Problem solving and exercises]	4
Individual tutoring sessions [PRESENCIAL]]	1
Writing of reports or projects [AUTÓNOMA][Self-study]	20
Unit 5 (de 5): Courses and seminars	
Activities	Hours
Class Attendance (theory) [PRESENCIAL][Lectures]	5.5
Computer room practice [PRESENCIAL][Problem solving and exercises]	1.5
Individual tutoring sessions [PRESENCIAL][]	1
Writing of reports or projects [AUTÓNOMA][Self-study]	10
Global activity	
Activities	hours
Computer room practice [PRESENCIAL][Problem solving and exercises]	17.5
Individual tutoring sessions [PRESENCIAL][]	5
Writing of reports or projects [AUTÓNOMA][Self-study]	90
Class Attendance (theory) [PRESENCIAL][Lectures]	37.5
Total h	noras: 150

10. Bibliography and Sources						
Author(s)	Title/Link	Publishing house	Citv	ISBN	Year	Description
20. A.Quarterioni, R.Sacco, F.Saleri	Numerical Mathematics	Springer-Verlag			2000	
C. Bernardi and Y. Maday	Approximations spectrales de problemes aux limites elliptiques	Springer			1992	
C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang	Spectral Methods for Fluid Dynamics	Springer			1988	
C. Johnson	Numerical solution of P.D.E. by the Finite Element Method	Cambridge University Press			1987	
D. Gotlieb and S. Orszag	Numerical Analysis of Spectral Methods ¿Theory and Applications	SIAM			1977	
D.F.Griffiths, A.R.Mitchell	The finite difference method in partial differential equation	John Wiley			1980	
E. Godlewski, P.A. Raviart	Hyperbolic systems of conservation laws	Ellipses			1991	
E.Godlewski, P.A. Raviart	Numerical Approximation of Hyperbolic Systems of Conservation Laws	Springer-Verlag			1996	
G.D. Smith	Numerical Solution of Partial Differential Equations: Finite Difference Methods	Oxford University Press			1985	
G.F.Forsythe, W.R.Wasow	Finite difference methods for partial differential equations	John Wiley			1960	
J. C. Strikwerda	Finite difference Schemes and Partial Differential	Pacific Grove, CA: Wadsworth and Brooks			1989	
J.H.Mathews, K.D. Fink	Métodos Numéricos con MATLAB	Prentice-Hall			2000	
J.M. Sanz-Serna	Fourier techniques in numerical methods for evolutionary problems. 3RD Granada Seminar on Computational Physics	Springer			1995	
L.N. Trefethen	Spectral methods in Matlab	SIAM			2000	
O.C. Zienkiewicz	The Finite Element Method in Engineering Science	McGraw-Hill			1971	
P.G.Ciarlet	The finite element method for elliptic problems	North Holland			1978	
R. LeVeque	Finite Volume Methods for Hyperbolic Problems	Cambridge Univesity Press	/		2002	
R.B. Richtmyer, K.W. Morton	Difference methods for initial- value problems	John Wiley & Sons			1967	

R.G. Voigt, D. Gotlieb and M.Y.	Spectral Methods for Partial	SIAM	1984
Hussaini	Differential Equations	Pearson	
S. Nakamura	Análisis Numérico y visualización gráfica con MATLAB	Educación/Prentice- Hall Hispanoamerica	1997